- 无标题文档
查看论文信息

中文题名:

 利用扫描隧道显微镜调控转角双层石墨烯的层间耦合强度    

姓名:

 赵亚新    

保密级别:

 公开    

论文语种:

 中文    

学科代码:

 070205    

学科专业:

 凝聚态物理    

学生类型:

 硕士    

学位:

 理学硕士    

学位类型:

 学术学位    

学位年度:

 2022    

校区:

 北京校区培养    

学院:

 物理学系    

研究方向:

 双层转角石墨烯的电学性质    

第一导师姓名:

 何林    

第一导师单位:

 北京师范大学物理学系    

提交日期:

 2022-06-12    

答辩日期:

 2022-05-25    

外文题名:

 SCANNING TUNNELING MICROSCOPY STUDY OF LOCAL INTERLAYER COUPLING IN TWISTED BILAYER GRAPHENE    

中文关键词:

 石墨烯 ; 转角电子学 ; 层间距离 ; 极低频振荡 ; 扫描隧道显微镜    

外文关键词:

 graphene ; twistronics ; interlayer distance ; ultr low frequence oscillation    

中文摘要:
二维层状材料研究的兴起得益于石墨烯的发现。在此前,科学研究人员们普遍认为严格意义上的二维晶体无法稳定存在。单层石墨烯作为最早被发现的二维材料,由于其具有原子层厚度的特性,使得其中的无质量狄拉克-费米子的行为极易被调控。实验上常用的调控手段包括但不限于:栅压调控,外加电、磁场,构筑异质结等。当两层石墨烯之间以一定的范德华相互作用力结合在一起构成石墨烯-石墨烯同质结(转角双层石墨烯)时,表现出与单层石墨烯完全不同的性质。转角双层石墨烯(TBG)的电学性质极其依赖于层间转角和层间耦合强度。理论计算结果表明,不同层间角度的双层石墨烯具有完全不同的能带结构,给体系带来十分丰富的物理现象,这一结论在后续的实验研究工作中得到了进一步的证明。此外,实验物理学家们还发现即便层间转角θ一定,体系的电学性质也会有所差异。例如,在“魔角”石墨烯体系中,不同课题组得到的实验探测结果不尽相同。又比如,通过将不同课题组在扫描隧道显微镜 (STM) 实验中得到的范霍夫峰能量间距随层间转角的变化关系进行统计后发现,同一角度下的范霍夫能量间距略有差异。这是由于在样品构筑的过程中不可避免地引入应力或者其他的杂质缺陷,导致体系的层间耦合强度不同,进而影响了体系的电学性质。因此,层间耦合强度为体系电学性质的调控提供了一个全新的自由度。但是,相比于转角的可控精确度~ 0.02°来说,我们仍缺乏一种实验手段精确地表征体系层间耦合强度的变化。

在本文中,我们通过化学气相沉积法 ( CVD) 和湿法转移技术可控地制备TBG样品,利用STM 和STM针尖的操控技术,实现对TBG 层间耦合强度的调控与表征,进一步地结合扫描隧道谱学探测手段 ( STS ) 对TBG表面的电学性质进行探测。基于此,本文主要研究内容和结果如下:

1. 利用STM针尖调控TBG体系的层间耦合强度

利用STM针尖的操纵技术,探究两种调控TBG体系的电学性质的方法。一种是通过改变扫图角度或针尖-样品距离,进而改变二者之间的范德华相互作用;另一种是施加针尖脉冲 ( tip-pulse )以提供局域的强应力场,有效地调节体系的层间耦合强度。

2.     STM针尖脉冲诱导TBG层间距离的周期性振荡行为

我们通过对解耦的TBG施加针尖脉冲的作用,诱导上层石墨烯产生极低频的振荡行为,致使两层石墨烯之间的层间距离发生周期性变化。在双层转角石墨烯中,范霍夫峰能量间距与层间耦合强度线性相关,层间耦合强度在平衡距离附近与层间间距有着近似指数的依赖关系。因此,通过扫描隧道谱测量范霍夫峰能量间距可以得到亚埃级精度的层间间距信息。在此基础之上,我们创新地提出一种可以实现动态探测石墨烯晶格面外振动的方法。进一步地结合理论计算,我们发现STM针尖脉冲引起的层间距离的大小变化,等效于在体系施加10 GPa大小的压强,这为实现二维平面材料电学性质的调控提供一种全新的实验探测手段。


外文摘要:

The rise of two-dimensional layered materials is due to the discovery of graphene. Previously, scientific researchers generally believed that two-dimensional materials cannot be stable. Monolayer graphene has the characteristic of atomic layer thickness, which makes the behavior of massless Dirac fermions easily regulated. The commonly used control methods include: back-gated control, external electric or magnetic field, heterostructures and so on. When two graphene layers are combined together by a certain van der Waals interaction force to form graphene-graphene homojunction (twisted bilayer graphene), they exhibit completely different properties from monolayer graphene. The electrical properties of twisted bilayer graphene (TBG) are extremely dependent on the twisted angle and interlayer interaction. Theoretical calculation results show that graphene with different twisted angles has completely different band structures, taking rich physical phenomenas to TBG system, which has been further proved in subsequent experimental studies. In addition, the experimental scientists found that the properties of the system differed even at a certain twist Angle. For example, in the "magic angle" system, different groups of researchers reported different results. Another example is the van Hove singularities energy spacing obtained by different groups in scanning tunneling microscopy (STM) experiment varies with the twisted angle. It was found that the van Hove singularities energy spacing was slightly different even the same twisted angle, which is due to the introduction of strain or impurity defects, resulting in the different coupling strength between layers of the system. The interlayer coupling strength provides a new degree of freedom for regulating the electrical properties of the system. Compared with the controllable precision of twisted angle ~0.02°, we still lack an experimental method to accurately characterize the change of interlayer coupling between layers of the TBG system.

In this paper, TBG samples were prepared by chemical vapor deposition (CVD) and wet transfer. Then, STM and STM tip manipulation techniques were used to control and characterize the interlayer interaction of TBG, and scanning tunneling spectroscopy (STS) was used to detect the electrical properties of the sample surface. Based on this, the main results are as follows:

1. The interlayer interaction of TBG system was controlled by STM tip

Using the manipulation techniques of STM tip, we explore two methods to regulate the electrical properties of TBG system. One is to change the sweep angle and the tip-sample distance, leading to the changes of the van der Waals interaction. The other is to apply a tip-pulse, which can effectively adjust the interlayer coupling strength of the TBG system by quoting a high local force between tip and sample.

2. Periodic oscillation behavior of TBG interlayer distance induced by STM tip pulse

By applying a tip pulse to the decoupled TBG, we induced the upper layer of graphene to oscillate at extremely low frequencies, resulting in periodic changes in the interlayer distance between the two layers. In TBG, the van Hove singularities energy spacing is linearly correlated with the interlayer coupling strength, while the interlayer coupling strength is approximately exponentially dependent on the interlayer spacing near the equilibrium distance. Therefore, the interlayer spacing with sub-angstrom accuracy can be obtained by measuring the energy spacing of Van Hove singularities obtained by scanning tunneling spectrum. We propose an innovative method to dynamically detect the out-of-plane vibration of graphene lattice. Combined with the further theoretical calculation, we find that the change of the distance between layers caused by the STM tip pulse is equivalent to the pressure of 10 GPa applied to the system, which provides a new method to achieve the control of electrical properties of two-dimensional planar materials.

参考文献总数:

 103    

作者简介:

 以第一作者身份在Physical Review Letters 发表学术论文一篇。    

馆藏号:

 硕070205/22004    

开放日期:

 2023-06-12    

无标题文档

   建议浏览器: 谷歌 360请用极速模式,双核浏览器请用极速模式