- 无标题文档
查看论文信息

中文题名:

 离子液体修饰复合材料的制备与性能及其在超级电容器中的应用    

姓名:

 董畅    

保密级别:

 公开    

论文语种:

 中文    

学科代码:

 070305    

学科专业:

 高分子化学与物理    

学生类型:

 硕士    

学位:

 理学硕士    

学位类型:

 学术学位    

学位年度:

 2021    

校区:

 北京校区培养    

学院:

 化学学院    

第一导师姓名:

 黄俐研    

第一导师单位:

 北京师范大学化学学院    

提交日期:

 2021-06-21    

答辩日期:

 2021-06-07    

外文题名:

 PREPARATION AND PERFORMANCE OF IONIC LIQUID MODIFIED COMPOSITES AND THEIR APPLICATION IN SUPERCAPACITOR    

中文关键词:

 离子液体 ; 石墨烯 ; 聚苯胺 ; 超级电容器 ; 电化学性能    

中文摘要:

超级电容器凭借自身兼具循环寿命长和功率密度大的优点,被广泛应用于生产生活的各个领域中,它是能有效缓解当今社会能源匮乏问题的储能装置。本文制备了离子液体修饰的石墨烯与石墨烯/聚苯胺复合材料以及以聚离子液体为聚合物基体的离子凝胶,研究了材料的电化学性能,以期得到高性能储能器件的电极和电解质材料。

以离子液体1-丙磺酸-3-甲基咪唑硫酸氢盐和1-丙磺酸-3-甲基咪唑对甲苯磺酸盐([PSMIM][HSO4]和[PSMIM][PTSA])修饰还原氧化石墨烯(RGO),制备了RGO-IL1和RGO-IL2复合材料,并表征了复合材料的结构与性能。结果表明,离子液体与RGO的结合可有效抑制其聚集现象,同时提高了复合材料与IL电解液的相容性,有效改善了复合材料的电化学性能。RGO-IL1和RGO-IL2的比电容最高可达173 F g-1和193 F g-1;由RGO-IL1和RGO-IL2组装的器件在IL电解液中表现出优异的能量密度(32.02 Wh kg-1和50.19 Wh kg-1)与长循环寿命,其在2000次循环后电容还剩初始值的80.79%和87.23%。

通过原位聚合在RGO-IL1和RGO-IL2表面包覆聚苯胺,制得RGO-IL1/PANI和RGO-IL2/PANI复合材料,并对复合材料的结构与性能进行了表征。结果表明,离子液体作为PANI的复合位点和掺杂剂,增加了贡献赝电容的PANI负载量,同时稳定了材料结构,显著提升材料的电化学性能。RGO-IL1/PANI和RGO-IL2/PANI的比电容最高可达785 F g-1和620 F g-1;由RGO-IL1/PANI组装的对称超级电容器表现出24.1 Wh kg-1的高能量密度,在1000次循环后电容保持率高达91.5%;由RGO-IL1/PANI和RGO-IL2组装成非对称器件,具有1.5 V的电化学稳定窗口和46.5 Wh kg-1的高能量密度。复合材料展现出作为高性能储能设备电极良好的应用前景。

以两种咪唑类聚离子液体PIL-PF6和PIL-TFSI作为聚合物基体制备了Ionogel-1和Ionogel-2离子凝胶,并对凝胶的电化学性能、机械性能和自愈性能进行了表征,凭借聚离子液体和离子液体自身的优异性能和彼此间良好的相容性,材料的综合性能得到显著提升。Ionogel-1表现出3.82×10-5 S cm-1的高离子电导率、308 kPa的拉伸强度和831%的断裂伸长率;Ionogel-2表现出8.35×10-5 S cm-1的高离子电导率、147 kPa的拉伸强度和575%的断裂伸长率。

外文摘要:

Due to their advantages of long cycle life and high power density, supercapacitors are of great interest to researchers all over the world. Supercapacitors are used in various fields of production and life, which are considered as an efficient energy device to alleviate the energy shortage in society. In this paper, the electrochemical properties of the composites were improved by modifying the electrodes or electrolyte materials of supercapacitors with ionic liquid and polyionic liquid.

Ionic liquid modified reduced graphene oxide composites (RGO-IL1 or RGO-IL2) were prepared by hydrothermal method. The results showed that the modification of ionic liquid effectively improved the electrochemical performances of the composite by inhibiting its aggregation and improving its compatibility with IL electrolyte. The specific capacitance of RGO-IL1 and RGO-IL2 were up to 173 F g-1 and 193 F g-1, respectively. The symmetrical device based on RGO-IL1 and RGO-IL2 showed 32.02 Wh kg-1 and 50.19 Wh kg-1 in IL electrolyte, respectively. In addition, after 2000 cycles, the capacitance of RGO-IL1 and RGO-IL2 supercapacitors were still 80.79% and 87.23% of the initial value, respectively.

To further improve the electrochemical performance, RGO-IL1/PANI and RGO-IL2 /PANI were prepared. The results showed that the ionic liquid enlarged the interlayer distance of RGO sheets and stabilized the composites structure. The specific capacitance of RGO-IL1/PANI and RGO-IL2/PANI were up to 785 F g-1 and 620 F g-1, respectively. The symmetrical device assembled by RGO-IL1/PANI showed a high energy density of 24.1 Wh kg-1. The asymmetric device assembled by RGO-IL1 /PANI and RGO-IL2 showed wide operating voltage (1.5 V) and high energy density (46.5 Wh kg-1). Composites showed great application prospect as high performance energy storage equipment electrodes.

The ionogels (Ionogel-1 and Ionogel-2) were prepared by one-pot method using polyionic liquid as polymer skeleton. Relying on the excellent performance of each component and good compatibility between each other, the performance of the ionogels were maximized. The results showed that Ionogel-1 and Ionogel-2 exhibited strong mechanical properties (308 kPa tensile stress at 831% stretch ratio and 147 kPa tensile stress at 575% stretch ratio, respectively) and high ionic conductivity (3.82×10-5 S cm-1 and 8.35×10-5 S cm-1, respectively).

参考文献总数:

 156    

馆藏号:

 硕070305/21012    

开放日期:

 2022-06-21    

无标题文档

   建议浏览器: 谷歌 360请用极速模式,双核浏览器请用极速模式