中文题名: | 数据驱动的在线系统用户冷启动问题研究 |
姓名: | |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 071101 |
学科专业: | |
学生类型: | 硕士 |
学位: | 理学硕士 |
学位类型: | |
学位年度: | 2024 |
校区: | |
学院: | |
研究方向: | 信息挖掘 |
第一导师姓名: | |
第一导师单位: | |
提交日期: | 2024-06-27 |
答辩日期: | 2024-05-29 |
外文题名: | Research on Cold-Start Problem in Online Systems Driven by Data |
中文关键词: | |
外文关键词: | Cold-Start Problem ; Information Mining ; Bootstrap ; Popular Item |
中文摘要: |
随着互联网浪潮袭来,人们在浩如烟海的信息中想要快速寻找到所需的内容是一个被迫面临的现实难题。推荐系统的出现,无疑是解了燃眉之急,也由此奠定了其在在线系统中的不可或缺的地位。然而,面对刚刚加入系统的用户时,用户的冷启动问题显现,这是因为系统缺乏该用户的数据,无法为其提供有效的推荐。 |
外文摘要: |
With the advent of the Internet, people are forced to face a real problem in quickly finding the content they need in the vast sea of information. The emergence of the recommendation system undoubtedly solves the urgent need, and thus establishes its indispensable position in the online system. However, when faced with a user who has just joined the system, the user's cold start problem sometimes appears. This is because the system lacks the user's data and cannot provide effective recommendations for them. |
参考文献总数: | 53 |
馆藏号: | 硕071101/24001 |
开放日期: | 2025-06-27 |