中文题名: | 非典型发光聚电解质复合物的发光行为 |
姓名: | |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 070305 |
学科专业: | |
学生类型: | 硕士 |
学位: | 理学硕士 |
学位类型: | |
学位年度: | 2024 |
校区: | |
学院: | |
研究方向: | 非典型发光化合物 |
第一导师姓名: | |
第一导师单位: | |
提交日期: | 2024-06-12 |
答辩日期: | 2024-05-25 |
外文题名: | PHOTOLUMINESCENT BEHAVIORS OF NONCONVENTIONAL LUMINESCENT POLYELECTROLYTE COMPLEXES |
中文关键词: | 非典型发光化合物 ; 簇聚诱导发光 ; 聚电解质复合物 ; Förster共振能量转移 ; 非典型室温磷光水凝胶 |
外文关键词: | Nonconventional luminophores ; Clustering-triggered emission ; Polyelectrolyte complexes ; Förster resonance energy transfer ; Nonconventional room-temperature phosphorescent hydrogels |
中文摘要: |
非典型发光化合物不含苯环、芳杂环等大共轭结构,而通常以含有氮、氧、硫、磷、卤素等富电子杂原子和/或不饱和键的非共轭或小共轭结构为生色团。获得量子产率更高、发射更红移的非典型发光化合物一直是非典型发光领域的重要研究课题。根据簇聚诱导发光(CTE)机理,非典型发光化合物的发射中心是由非典型生色团聚集形成的发光团簇。提高发光团簇的空间共轭(TSC)程度和构象刚性化程度有利于发射的红移和增强。本论文开发了一种新的多组分非典型发光体系,以仅含有非典型生色团的聚电解质或单体为原料,通过溶液共混、模板聚合等方法制备了聚电解质复合物(PEC),研究了其结构与发光行为之间的关系,初步总结出了非典型发光PEC的发射可能存在的普遍规律。主要的研究结果如下: (1)以阴离子聚电解质海藻酸钠(SA)和阳离子聚电解质聚乙烯亚胺(PEI)为原料,通过共混法制备了SA-PEI溶液和SA-PEI薄膜,将SA-PEI薄膜浸泡在盐酸溶液中,得到SA-PEI PEC薄膜。与SA和PEI相比,SA-PEI溶液和SA-PEI薄膜的最大激发波长(λexmax)和最大发射波长(λemmax)没有发生红移。而SA-PEI PEC薄膜形成了显著红移的发射中心(λexmax ≈470 nm,λemmax≈550 nm),并且无论薄膜处于湿润还是干燥状态下,该发射中心的位置都几乎一致。同时,与SA、PEI和SA-PEI薄膜相比,SA-PEI PEC薄膜的量子产率显著提升。这些结果归因于胺基正离子和羧酸根通过离子键形成了TSC和构象刚性化程度更高的结构紧密的发光团簇。此外,SA-PEI PEC薄膜还具有λemmax分别在370、470和550 nm左右的多重发射中心,表现出特殊的激发波长依赖荧光(EDF)特性,在很宽的激发波长范围内都表现出很好的发射强度,还能在290或370 nm紫外光的照射下呈现出接近白光的发射。 (2)以阳离子聚电解质聚烯丙基胺盐酸盐(PAH)和阴离子单体丙烯酸钠(AANa)为原料,通过模板聚合法制备了PAH-PAANa PEC水凝胶。PAH-PAANa PEC在水凝胶和干凝胶状态下的荧光发射具有几乎一致的λexmax(424/428 nm)和λemmax(486 nm),在水凝胶状态下也能产生室温磷光(RTP)发射(τP=14.9 ms),在干凝胶状态下的量子产率更高(16.6%)、RTP寿命更长(τP=145.6 ms)。与单组分聚合物相比,PAH-PAANa的发光性能更加优异。这些结果归因于PAH-PAANa中的胺基正离子和羧酸根通过离子键形成了TSC和构象刚性化程度更高的结构紧密的发光团簇,能将水分子和溶解氧隔绝在团簇在外,有利于减少三重态激子在水环境下淬灭。此外,我们构建了以PAH-PAANa为能量供体、荧光染料小分子荧光素钠(Fluc)或罗丹明B(RB)为能量受体的Förster共振能量转移(FRET)体系,得到了具有可调颜色和寿命的荧光和余辉。利用PAH-PAANa粉末可加工重塑的性质,将不同含量RB的PAH-PAANa粉末加工组合成图案,实现了其在信息存储与加密领域的应用。 (3)以阴离子聚电解质聚丙烯酸(PAA)和阳离子聚电解质(PEI)为原料,通过共混法在两种不同介电常数的溶剂(H2O和DMSO)中制备了两种发光行为不同的PAA-PEI PEC复合物(PAA-PEI-H和PAA-PEI-D)。与PAA-PEI-D相比,PAA-PEI-H荧光发射的红移程度更大,λexmax和λemmax分别为434和533 nm,量子产率更高(9.4%),并且能够产生RTP发射。干燥后所得的d-PAA-PEI-H的λexmax和λemmax几乎不变,量子产率提高至13.5%,RTP寿命增加至83.9 ms。这些结果也归因于PAA与PEI之间的强静电相互作用导致PAA-PEI-H或d-PAA-PEI-H中形成了TSC程度和构象刚性化程度更大的结构紧密的发光团簇。 |
外文摘要: |
Nonconventional luminophores do not contain large conjugated structures such as benzene rings or aromatic heterocycles, instead, they typically possess nonconjugated or weakly conjugated structures based on electron-rich heteroatoms (nitrogen, oxygen, sulfur, phosphorus, halogen, etc.) and/or unsaturated bonds as chromophores. Acheiving higher quantum yields and red-shifted emissions is an important research topic in nonconventional luminogens. According to clustering-triggered emission (CTE) mechanism, the emission centers of nonconventional luminophores are clusters formed by the aggregation of nonconventional chromophores. Enhancing through-space conjugation (TSC) and conformational rigidity of luminescent clusters is beneficial for red-shifted and enhanced emissions. In this work, we developed a novel multi-component nonconventional photoluminescent system—nonconventional luminescent polyelectrolyte complexes (PECs) prepared through methods like solution blending and template polymerization, using polyelectrolytes or monomers containing only nonconventional chromophores as raw materials. The relationship between their structures and photoluminescent behaviors was studied, and the possible universal patterns of emissions of nonconventional luminescent PECs. The main results are as follows: (1) SA-PEI solutions and SA-PEI films were firstly prepared by blending the anionic polyelectrolyte sodium alginate (SA) and the cationic polyelectrolyte polyethyleneimine (PEI), and then SA-PEI PEC films were obtained by immersing the SA-PEI films in HCl solutions. Compared to SA and PEI, no red-shift is observed in the maximum excitation wavelength (λexmax) and the maximum emission wavelength (λemmax ) of the SA-PEI solutions or the SA-PEI films. However, a new emission center with a significant red-shifted emission (λexmax≈470 nm, λemmax≈550 nm) appears in the SA-PEI PEC films, and the emission center remains unchanged in both wet and dry states. Moreover, compared to SA, PEI and SA-PEI films, the quantum yields of the SA-PEI PEC films are significantly improved. These results are attributed to the formation of the compact luminescent clusters with more extended TSC and rigidified conformations through ionic bonding between amine groups and carboxyl groups. Furthermore, the SA-PEI PEC films consist of multiple emission centers with λemmax around 370, 470 and 550 nm, resulting in a unique excitation-dependent fluorescence (EDF). Consequently, the films show strong emission intensities under the irradiation of a wide excitation wavelengths range, and even emit nearly white light under the irradiation of 290 or 370 nm UV light. (2) Poly(allylamine hydrochloride) (PAH)-sodium polyacrylate (PAANa) PEC hydrogels were synthesized through template polymerization by using the cationic polyelectrolyte PAH and the anionic monomer sodium acrylate (AANa) as the raw materials. PAH-PAANa PECs exhibit fluorescence emissions with almost the same λexmax (424/428 nm) and λemmax (486 nm) in both hydrogel and xerogel states. The PAH-PAANa hydrogels exhibit room temperature phosphorescence (RTP) emission (τP=14.9 ms), and the xerogels demonstrate a higher quantum yield (16.6%) and a longer RTP lifetime (τP=145.6 ms). Compared to the component polymers, the PAH-PAANa PECs exhibit superior luminescence performances, due to the formation of clusters with more extended TSC and rigidified conformations through ionic bonding between the amino groups and the carboxyl groups in PAH-PAANa. These compact clusters effectively isolate H2O and dissolved O2 and hence reduce the quenching of triplet excitons in a water environment. Furthermore, we constructed Förster resonance energy transfer (FRET) process using PAH-PAANa as an energy donor and a small-molecule fluorescent dye such as sodium fluorescein (Fluc) or Rhodamine B (RB) as an energy acceptor, successfully achieving tunable colors and lifetimes of fluorescence and afterglows. By utilizing the processability and reshaping properties of PAH-PAANa powders, PAH-PAANa powders with different RB contents are processed and combined into patterns, achieving their application in the fields of information storage and encryption. (3) Two different polyacrylic acid (PAA)-PEI PECs (PAA-PEI-H and PAA-PEI-D) were prepared by solution blending in solvents (H2O and DMSO) with different dielectric constants. Compared the PAA-PEI-D, the PAA-PEI-H shows significant red-shifted fluorescence emissions, with λexmax and λemmax at 434 nm and 533 nm, respectively, and a higher quantum yield (9.4%) and RTP emissions. The λexmax and λemmax of the dried PAA-PEI-H (d-PAA-PEI-H) remain almost unchanged, with an enhanced quantum yield (13.5%) and an increased RTP lifetime (83.9 ms). These results are also attributed to the strong electrostatic interaction between PAA and PEI, which leads to the formation of tightly structured luminescent clusters with higher TSC and conformational rigidity in PAA-PEI-H or d-PAA-PEI-H. |
参考文献总数: | 257 |
馆藏号: | 硕070305/24004 |
开放日期: | 2025-06-13 |