- 无标题文档
查看论文信息

中文题名:

 基于跳跃持续的金融资产价格理论与应用研究    

姓名:

 宋诗佳    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 071102    

学科专业:

 系统分析与集成    

学生类型:

 博士    

学位:

 理学博士    

学位类型:

 学术学位    

学位年度:

 2024    

校区:

 北京校区培养    

学院:

 系统科学学院    

研究方向:

 金融系统复杂性    

第一导师姓名:

 李汉东    

第一导师单位:

 系统科学学院    

提交日期:

 2024-06-20    

答辩日期:

 2024-05-22    

外文题名:

 Research on the Theory and Application of Financial Asset Pricing Based on Jump Persistence    

中文关键词:

 资产价格理论 ; 价格跳跃 ; 滤过泊松过程 ; 多主体建模 ; 波动率建模 ; 风险预测    

外文关键词:

 Asset pricing theory ; Price jumps ; Filtered Poisson process ; Agent-based modeling ; Volatility modeling ; Risk prediction    

中文摘要:

现代金融系统因多种个体和元素的相互作用而表现出高度复杂性,这种复 杂性通常导致集体行为带来的效应远远超出个体行为效应的简单加总。由于传 统的金融理论和数学建模工具大多包含理想化、线性单一化和形式化的假设,其 在描述现实金融系统复杂性方面具有较大的局限性。而系统科学和复杂性科学 则为研究金融复杂系统提供了新的方法和工具。金融资产的价格过程作为金融 系统最重要的观察对象之一,其表征的市场风险和不确定性正是金融复杂性的 一种具体表现,为深入探究复杂现象背后的规律提供了切入点。因此,本文将从 系统科学和复杂性科学的视角出发,以金融资产价格为主要研究对象,对价格理 论及其应用研究展开讨论,以期更好地应对复杂性对实际金融风险管理带来的 挑战。
本文在金融资产价格的实际变化中观察到价格跳跃存在一定程度的持续性, 而这与传统的价格跳跃-扩散理论模型中的瞬时跳跃假设相悖。因此,本文基于 跳跃持续这一具体观测,提出了价格的跳跃持续-扩散理论,并建立起一个资产 价格的新理论与方法体系。该体系中包含三部分主要内容,其中最核心的内容是 价格的跳跃持续-扩散理论模型,其对价格的宏观变化规律进行了抽象描述,并 对其余两部分内容提供理论指导;进一步地,第二部分内容在微观市场结构层面 对价格的内在生成机制进行了讨论,从市场中交易者的行为演化过程中发掘价 格跳跃持续现象的产生原因;最后一部分内容囊括了基于跳跃持续-扩散理论的 三个应用研究:跳跃检验、市场风险衡量与预测以及系统市场风险的早期预警, 以充分论证本文所提出的理论的合理性,并揭示其在增进金融风险监管工具的 有效性、提高风险管理能力方面的现实意义。
本文首先提出了价格过程所遵循的跳跃持续-扩散理论模型,其保留了跳跃- 扩散模型中对价格连续变化过程的假设,并利用滤过泊松过程(即发射噪声过 程)对具有持续性的跳跃过程进行刻画,这一理论模型强调了单个跳跃对价格过 程的影响是随时间变化的而非瞬时的。对于这种特殊形式的跳跃过程,本文也提 出了相应的参数估计方法。此后,本文先后通过两个模拟实验表明了价格的跳跃 持续-扩散模型能够生成具有典型金融事实的价格序列,且参数估计方法在对包 含噪声的跳跃过程进行估计时仍然是稳健的,从而证明了跳跃持续-扩散理论模 型的基本有效性和可操作性。截至目前,尚未有相关研究从跳跃持续角度对价格 过程进行描述,该理论模型具有开创性的意义。
其次,本文通过建立异质主体的多主体模型,以连续双向拍卖这一市场微观 结构为基础,探究了市场中三类主体交易者——基本值交易者、技术交易者和随 机交易者的交易行为对价格形成过程的影响,揭示了价格的内在生成机制和价 格跳跃持续现象的产生原因,以助于相关从业者更好地理解价格和风险的形成。 本文基于行为经济学的相关理论,考虑到了交易者们被极端损失击穿信心的情 况,因而提出了新的主体角色转换机制,允许基本值交易者和技术交易者向随机 交易者进行转换。新规则下的多主体模型相较于传统规则下的多主体模型能够 复现出更加频繁且明显的跳跃持续现象,这一结果更加符合现实市场中的情况。 而最终通过观察主体数量的演化过程以及其对价格的反馈结果,本文得出一个 基本结论,即,当技术交易者和随机交易者挤压基本值交易者的生存空间并使得 其数量完全为 0 时,会导致跳跃持续现象的频发,这可能是跳跃持续现象产生的 内在原因。由此可以窥见,维持基本值交易者的流动性是维持市场相对稳定的关 键。
最后,本文将价格的跳跃持续-扩散理论应用于风险识别、风险大小的衡量 与预测、系统市场风险未来发生时刻的早期预警上。(1)在风险识别上,本文通 过蒙特卡洛模拟揭示了基于瞬时跳跃假设下传统跳跃检验的局限性,并从遍历 抽样频率和抽样起点的角度提出了改进的跳跃检验方法;同时,本文改进了判 定共同跳跃的规则,不再仅仅将同一时刻发生的跳跃视为共同跳跃,而是将跳 跃持续时间窗口重叠的跳跃视为共同跳跃。本文基于上证 50 指数及其个股数据 进行实证,结果显示改进的跳跃检验程序比传统方法能检验出更多的系统性共 同跳跃,这意味着系统性的市场风险的发生频率比想象中更高,值得金融风险 管理机构和个人的高度关注。(2)在市场风险的衡量与预测上,本文对服从滤 过泊松过程的高频跳跃过程进行了一步预测,并因此通过改进价格过程的一步 预测实现对已实现波动率的预测,最终得以改进在险价值(Value-at-Risk,VaR) 和期望损失(Expected shortfall,ES)这一类经典的风险测量模型。基于上证综 指和深证成指的历史数据,本文通过实证表明基于跳跃持续-扩散理论的 VaR 和 ES 模型相较于基准 VaR 及 ES 模型能更准确地捕捉市场的尾部极端风险,在一 系列回测检验中展现出其统计学意义上的明显优势。(3)在系统市场风险的早期 预警上,本文在跳跃持续理论的支撑下,结合了非线性领域中判定事件同步的方 法和复杂网络的工具,通过股票收益极端值之间的领先-滞后关系构建起风险网 络,并基于网络的拓扑结构提出了一个综合指标,对预测区间内系统市场风险发 生的可能性大小进行衡量并给出最终的预测结果。基于上证指数及其成分股数 据、标普 500 指数及其成分股数据的实证结果均表明,在领先股票提供的预测区 间内能够准确预测出超过 70% 的系统市场风险。至此,价格的跳跃持续-扩散理 论已被证明能广泛应用于风险管理领域,相关模型的性能均得到了极大地改进,这充分体现出该理论在预测、处理、防范极端金融风险方面的优势。 综上,本文遵从“从具体到一般再到具体”的基本逻辑,基于跳跃持续这一具 体的复杂现象,提出了价格的跳跃持续-扩散理论,并建立了描述价格运动规律 的一般化数理模型、解释价格内在生成过程的一般化机制模型,再基于这一新理 论开展了具体的风险管理应用研究,最终形成了关于资产价格的新理论与方法 体系。本文欲从复杂系统科学的角度看待金融领域的核心问题,采用一系列跨学 科领域的方法工具解决实际问题,以促进金融市场管理理论的创新与发展,最终实现及时识别风险、预警风险与控制风险损失以及预防金融危机的现实目的。
 

外文摘要:

The modern financial system exhibits high complexity due to the interaction of various individuals and elements, and this complexity often leads to collective behavior effects that far exceed the simple summation of individual behavior effects. Traditional financial theories and mathematical modeling tools typically involve idealized, linear, and formalized assumptions, which significantly limit their ability to describe the com- plexity of real financial systems. In contrast, systems science and complexity science provide new methods and tools for studying complex financial systems. The pricing processes of assets, as one of the most critical observation targets of the financial sys- tem, represent market risks and uncertainties, which are concrete manifestations of fi- nancial complexity. These processes offer a point of entry for exploring the underlying laws of complex phenomena. Therefore, this paper will discuss asset pricing theory and its application from the perspectives of systems science and complexity science, aiming to better address the challenges that complexity brings to financial risk management.
This paper observes the persistence of price jumps in financial asset prices, which contradicts the instantaneous jump assumption in traditional jump-diffusion model of asset pricing. Therefore, based on the specific observation of jump persistence, this paper aims to propose a new theoretical and methodological framework for asset pric- ing. This framework contains three main parts, with the core being the persistent-jump- diffusion model of prices. This model provides an abstract description of the macro- scopic changes in prices and offers theoretical guidance for the other two parts. Fur- thermore, the second part of the system discusses the intrinsic generation mechanisms of prices at the micro-market-structure level, exploring the causes of the phenomenon of jumps with persistence from the evolutionary process of traders’ behavior in the market. Lastly, the framework encompasses application research considering jump persistence in three areas: jump testing, market risk measurement and prediction, and early warning of systematic market risks, to fully demonstrate the rationality of the persistent-jump- diffusion theory, revealing its significance in enhancing the effectiveness of financial risk tools and improving risk management capabilities.
This paper first proposes a persistent-jump-diffusion model for the price process,
which retains the assumption of continuous price changes from the jump-diffusion model and characterizes the jump process with persistence using a filtered Poisson pro- cess (shot noise process). This theoretical model emphasizes that the impact of a single jump on the price process is time-varying rather than instantaneous. For this special form of jump process, the paper also proposes a corresponding parameter estimation method. Subsequently, through two simulation experiments, the paper demonstrates that the persistent-jump-diffusion model can generate price sequences with financial stylized facts, and the parameter estimation method remains robust when estimating jump processes with noise. This proves the basic effectiveness and operability of the persistent-jump-diffusion theoretical model. Up to now, there has been no related re- search describing the price process from the perspective of jump persistence, making this theoretical model pioneering in its significance.
Secondly, by establishing an agent-based model of heterogeneous agents, based on the micro-structure of continuous double auction, the paper explores the impact of the trading behaviors of three types of traders—fundamental traders, chartists, and ran- dom traders—on the price formation, revealing the intrinsic generation mechanism of prices and the possible reasons for the occurrence of jumps with persistence. Based on relevant theories from behavioral economics, this paper considers the situation where traders’ confidence is shattered by extreme losses, thereby allowing fundamental traders and chartists to switch to random traders. By observing the evolution process of the number of agents and its feedback on prices, this paper draws a basic conclusion: when chartists and random traders oust fundamental traders and make their number drops to zero, persistent jumps occur more frequently.From this, it can be seen that maintaining the liquidity of fundamental traders is key to maintaining relative stability in the market.
Finally, the paper applies the theory of jump persistence to risk identification, mea- suring and predicting the magnitude of market risk, and early warning of the timing of future systematic market risks. (1) In risk identification, through Monte Carlo simula- tions, the paper reveals the limitations of traditional jump tests based on the instanta- neous jump assumption and proposes improved jump test methods. At the same time, jumps with overlapping persistence windows are considered as co-jumps, and the rules for determining co-jumps have been improved. The paper conducts empirical studies based on the SSE 50 Index and its constituent stocks, showing that the improved jump test procedures can identify more systematic co-jumps than traditional methods, indicating that the frequency of systematic risks is higher than imagined and deserves the at- tention of risk management institutions and individuals. (2) In terms of market risk mea- surement and prediction, the paper makes one-step predictions for high-frequency jump processes that follow the filtered Poisson process, obtaining improved high-frequency price forecasts and improved realized volatility, ultimately resulting in improved Value- at-Risk (VaR) and improved Expected Shortfall (ES) models. Based on historical data of the Shanghai Securities Composite Index and Shenzhen Securities Component Index, the paper empirically shows that the VaR and ES models based on the jump persistence can more accurately capture the market’s tail risks, demonstrating their statistical ad- vantages in a series of back-testing. (3) In early warning of systematic market risks, the paper combines methods from the nonlinear field for determining event synchro- nization and tools from complex networks to build a risk network based on the lead-lag relationships of exceedances, and proposes a structural indicator based on the network’s topology to measure the likelihood of systematic market risk in the future. Empirical results based on the Shanghai Securities Composite Index and its constituent stocks, and results based on the Standard & Poor’s 500 and its constituent stocks show that more than 70% of systematic market risks can be successfully predicted within the predicted intervals provided by leading stocks. Thus far, the persistent-jump-diffusion theory has been proven to be widely applicable in the field of risk management, demonstrating its advantages in forecasting, handling, and preventing extreme financial risks.
In summary, this paper follows the paradigm of “specific-general-specific”. Based on the specific phenomenon of jump persistence, a persistent-jump-diffusion pricing theory is proposed, along with a generalized mathematical model describing the laws of price movement and a generalized mechanism model explaining the intrinsic generation process of prices. Furthermore, specific application has been conducted based on this new theory, ultimately forming a new theoretical and methodological framework for asset pricing. The paper seeks to view the core problems of the financial field from the perspective of complex systems science, using a series of interdisciplinary tools to solve practical problems, to promote innovation and development in financial management theory, and ultimately achieve the practical goals of timely risk identification, early warning, control of risk losses, and prevention of financial crises.

参考文献总数:

 321    

作者简介:

 宋诗佳,北京师范大学系统科学学院系统分析与集成专业2021级博士生,师从于李汉东教授。其主要专注于金融复杂系统领域,研究方向主要集中在四个方面:金融市场风险建模与预测、金融资产价格动力学研究、系统性风险的早期预警、交叉学科背景下的风险管理。    

馆藏地:

 图书馆学位论文阅览区(主馆南区三层BC区)    

馆藏号:

 博071102/24005    

开放日期:

 2025-06-21    

无标题文档

   建议浏览器: 谷歌 360请用极速模式,双核浏览器请用极速模式