中文题名: | 1979-2017年京津冀区域大风日频次的变化及其环流背景分析 |
姓名: | |
保密级别: | 公开 |
论文语种: | 中文 |
学科代码: | 0705Z2 |
学科专业: | |
学生类型: | 硕士 |
学位: | 理学硕士 |
学位类型: | |
学位年度: | 2020 |
校区: | |
学院: | |
研究方向: | 气候变化 |
第一导师姓名: | |
第一导师单位: | |
提交日期: | 2020-06-05 |
答辩日期: | 2020-05-27 |
外文题名: | Regional strong wind events over Beijing-Tianjin-Hebei and the associated atmospheric circulation changes during 1979-2017 |
中文关键词: | |
外文关键词: | Beijing-Tianjin-Hebei region(BTH) ; Strong winds ; Atmospheric circulation ; Sea temperature ; Cluster analysis ; Weather patterns |
中文摘要: |
本文利用1979-2017年京津冀地区地面台站逐日的近地面风速资料分析了京津冀地区近39年来风速的气候背景。基于站点风速的频次分布,定义了研究区冬半年大风的风速标准以及区域性大风日。在此基础上分析了研究区冬半年大风日频次和风速的逐年变化特征(包括线性趋势和周期特征),并讨论了大风日频次和风速所对应的大气环流以及海表温度所表现出的特征及其对大风可能的影响机制。在ERA-Interim再分析资料的基础上,利用层次聚类的方法,将研究区冬季大风日的环流型进行分类,并讨论主要环流形势在空间分布以及在时间上的变化特征,得到的主要结果如下:
﹀
①地面台站风速资料的统计结果显示,京津冀地区1979-2017年站点日平均风速最大达到18.3 m/s,最小为0 m/s。从区域日平均风速上看,风速最大为8.9 m/s,最小为0.5 m/s,标准差为0.77 m/s,变化波动较小。京津冀区域的年平均风速表现出显著减小的趋势,线性速率为-0.05 m/s/10yr (p<0.0001)。全年风向的统计结果中偏北风和偏南风所占比重相近。 ②京津冀地区季节内平均风速的统计结果显示,春季的最大风速为8.9 m/s,冬季的最大风速为7.4 m/s,秋季和夏季的最大风速分别为6.5 m/s和4.7 m/s。冬季日平均风速表现出较强的波动性,风速标准差为0.81 m/s。春季次之,标准差为0.76 m/s。春季、夏季、秋季和冬季的风速分别在以-0.09 m/s/10yr、-0.03 m/s/10yr、-0.06 m/s/10yr和-0.03 m/s/10yr的线性速率减小。春季和冬季的风速表现出最大风速较大、变化波动较强的特征。 ③在京津冀地区冬半年风速的统计结果中,逐年的平均风速在以-0.01 m/s/10yr的线性速率减小。每日最大风速对应的风向以偏北风为主,平均占比59%。根据站点风速的频次分布,定义3.5 m/s(90 %分位)为研究区的大风风速,至少有60%站点的风速达到大风风速标准为大风日。逐年的大风日频次在以-1.77 d/10yr (p<0.1)的速率显著减少。大风日年平均风速呈显著减小的趋势,线性速率为-0.07 m/s/10yr (p<0.05)。非大风日的年平均风速表现出增大的趋势,线性速率为0.02 m/s/10yr。大风事件所发生的频次逐渐减少是导致研究区冬半年平均风速减小的主要原因。除长期趋势外,大风日频次和风速表现出显著的年际和年代际变化周期。其中,大风日频次有3-4年的年际周期和14-15年的年代际周期,大风日平均风速2-3年的年际周期最为显著。 ④京津冀地区冬半年大风所对应的大气环流主要表现出,东亚西风急流的强度与大风日频次表现出显著的正相关(r=0.37, p<0.1)。这表明急流强度偏强(弱)的年份,冬半年京津冀区域性大风日的频次相应增多(减少)。因为强度加强的急流会引起风速的垂直切变增大,可增强中纬度的天气扰动。此外,当急流强度加强时,处于西风急流入口的东亚地区出现异常经向环流,这使得急流中心区及北侧有异常下沉和偏北风气流,急流中心的南侧有异常上升气流。此外,北半球对流层中低层的大气环流伴随大风日频次的变化也表现出大尺度的异常环流特征。欧亚大陆500 hPa位势高度场呈自西向东的“低-高-低”异常分布型,850 hPa风场也表现出与之相符的环流异常,两个高度层中异常中心区的位置基本一致,对流层中下层呈正压结构。北大西洋地区呈南北向的“负-正”异常环流型,这与西大西洋遥相关型相似,西大西洋遥相关指数(WA)与大风日频次和风速的相关系数,均接近0.30。这表明京津冀冬半年区域性大风日频次和风速的变化,不仅与东亚地区的大气环流有关,还可能受到北半球大尺度环流及上游的北大西洋地区环流的影响。 ⑤京津冀地区冬半年的大风日频次和风速与北半球同期海表温度也表现出显著的相关性。北半球同期的海表温度出现三个主要的异常中心,分别位于北大西洋、北太平洋中西侧和东侧海区,其中北太平洋中西侧和北大西洋海区的海表温度与大风日频次和风速的变化呈负相关,北太平洋东侧海区则呈正相关。 ⑥利用层次聚类,京津冀地区冬季出现的大风日在天气尺度上的环流型被分为两类,两类环流型中的大风日数分别有145天和135 天。逐年的大风日频次分别在以-0.01 d/10yr和-0.94 d/10yr (p<0.1)的速率减少。在这两类大风当日的环流空间型中,研究区均处在异常低压的控制下,并伴随近地面异常强的偏北风和低温。欧亚大陆500 hPa高度场均表现出正负环流异常相间分布的特征,第一类天气型表现出自西向东方向的“正-负-正-负-正”异常分布型,它们分别是位于北大西洋地区的异常高压、位于东欧平原附近的异常弱低压、蒙古-西伯利亚地区的正异常中心、东北平原区的显著偏低异常以及中纬度西太平洋沿岸-日本群岛地区出现异常高压,该天气型中的异常信号可持续(16-18)天。在第二类天气型中高度场自西向东呈“负-正-负-正-负”的异常环流型,分别是位于北大西洋(挪威海-巴伦支海)的异常低压、蒙古-西伯利亚地区的异常高压、东北平原异常低压、日本群岛异常高压以及东侧的异常低压,异常信号可持续(13-15)天。这两类天气型中的异常信号在上游地区出现、东移发展增强、大风日后再减弱消失的过程是相似的。从大风日频次的变化速率上看,第二类天气型中大风频次的减少可能是近39年京津冀地区大风事件减少的主要原因。 |
外文摘要: |
In this article, the climate background of wind speed was analyzed in Beijing-Tianjin-Hebei (BTH) region from 1979 to 2017 by using the daily near-surface wind speed from meteorological stations. The standard strong wind speed and regional strong wind day are defined on the frequency distribution characteristics of near-surface wind speed in the winter half-year. The annual variation (including linear trend and periodic characteristics) of strong wind frequency and speed in the study region were analyzed. The atmospheric circulation and sea-surface temperature corresponding to strong wind frequency and speed also are researched. The mechanism of influence on the strong wind is further discussed. Based on the ERA-Interim reanalysis data, the K-means method and hierarchical clustering method are used to classify the circulation patterns of strong wind days in Eurasia, and discuss the spatial distribution and temporal distribution of the main circulation patterns. The main results obtained are as follows: The statistical results of meteorological station wind speed data show that the daily average wind speed in BTH region from 1979 to 2017 reached a maximum of 18.3 m/s and a minimum of 0 m/s. From the regional daily average wind speed, the maximum is 8.9 m/s, the minimum is 0.5 m/s, the standard deviation is 0.77 m/s, the result show that the fluctuation is small. The annual average wind speed shows a significant decrease trend, with a linear trend of -0.05 m/s/10yr (p<0.0001) in BTH region. The proportion of northerly and southerly winds in the wind direction throughout the year are similar. The statistical results of the seasonal average wind speed in the BTH region show that the maximum wind speed in spring is 8.9m/s, the maximum wind speed in winter is 7.4 m/s, and the maximum wind speeds in autumn and summer are 6.5 m/s and 4.7 m/s, respectively. Among them, the average daily wind speed in winter shows strong fluctuations with a standard deviation of 0.81 m/s. The standard deviation in spring is 0.76 m/s. The liner trends of wind speeds in spring, summer, autumn, and winter are -0.09 m/s/10yr, -0.03 m/s/10yr, -0.06 m/s/10yr and -0.03 m/s/10yr. The wind speeds in spring and winter show the characteristics of large maximum wind speed and strong fluctuation. The statistical results of the winter half-year wind speed show that the annual average wind speed decreases at a linear rate of -0.01 m/s/10yr in BTH region. The wind direction corresponding to the daily maximum wind speed is mainly northerly and northerly wind, accounting for 59% on average. According to the frequency distribution of wind speed, 3.5 m/s (90% percentile) is defined as the standard strong wind speed, and at least 60% of the stations' wind speed achieve the wind speed of 3.5 m/s as a regional strong wind day in BTH region. The annual frequency of strong wind days decrease significantly at a rate of -1.77 d/10yr (p<0.1); The linear rate of the annual average strong wind speed is -0.07 m/s/10yr (p<0.05). The average non-strong wind speed increases at a rate of 0.02 m/s/10yr. Increasing frequency of regional strong wind events is the main reason for the reduction of average wind speed in the study region. In addition to significant long-term trends, there are significant inter-annual and inter-decadal period of strong wind frequency and speed, the strong wind frequency has an inter-annual period of 3-4 years and an inter-decadal period of 14-15 years. The inter-annual period of strong wind speed is the most significant which has 2-3 years period. The atmospheric circulation corresponding to the strong wind in BTH region mainly shows that the intensity of the westerly jet stream in East Asia has a significant positive correlation with the frequency of the regional strong wind events (r |
参考文献总数: | 104 |
作者简介: | 石晓雪,地理科学学部2017级硕士研究生,全球环境变化专业,气候变化方向,现已发表中文核心论文一篇。 |
馆藏号: | 硕0705Z2/20036 |
开放日期: | 2021-06-05 |