中文题名: | 基于深度学习的典型陆地生态系统碳通量模拟及不确定性分析 |
姓名: | |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 0705Z2 |
学科专业: | |
学生类型: | 博士 |
学位: | 理学博士 |
学位类型: | |
学位年度: | 2023 |
校区: | |
学院: | |
研究方向: | 生态系统碳通量模拟 |
第一导师姓名: | |
第一导师单位: | |
提交日期: | 2023-06-20 |
答辩日期: | 2023-06-03 |
外文题名: | CARBON FLUX SIMULATION AND UNCERTAINTY ANALYSIS OF TYPICAL TERRESTRIAL ECOSYSTEMS BASED ON DEEP LEARNING |
中文关键词: | |
外文关键词: | Carbon flux simulation ; Recurrent neural networks ; Footprint model ; Graph neural network ; Influencing factors |
中文摘要: |
陆地生态系统通过增加固碳和减少温室气体排放可以提升气候变化减缓能力,这种“基于自然的气候解决方案”(natural climate solutions,NCS)被认为是生态系统自然碳汇之外的额外潜力,对于实现国家“碳中和”目标至关重要。由于生态系统呼吸模型模拟精度存在较大差异,净生态系统碳通量(Net Ecosystem Exchange,NEE)模拟尚未考虑时间序列信息和空间异质性的影响,导致不同陆地生态系统碳通量模拟过程中存在较大的不确定性。本文基于传统经验呼吸模型、时间序列和空间信息的深度学习方法模拟了典型陆地生态系统碳通量。本文使用六种传统经验模型模拟了蒙古高原四种草地生态系统呼吸,对比不同模型在不同生态系统中的模拟结果,探究了影响草地生态系统呼吸的关键影响因素。使用两种基于时间序列的循环神经网络模型(门控递归单元Gated Recurrent Unit,GRU和长短期记忆模型Long-short Term Memory,LSTM)模拟净生态系统碳通量,在不同的季节尺度上分析了环境因子对碳通量变化的影响,揭示了生物物理因素对生态系统碳通量影响的滞后效应。基于通量足迹分析模型与遥感影像,结合图神经网络模型模拟生态系统碳通量,并分析不同的因子变换组合对碳通量模拟结果的影响,为弥补涡度相关碳通量监测的下垫面异质性对监测精度的影响提供重要理论支撑。主要研究内容和结论如下: |
外文摘要: |
Terrestrial ecosystems can enhance climate change mitigation by increasing carbon sequestration and reducing greenhouse gas emissions, and this "nature-based climate solution" (NCS) is considered to be an additional potential to the natural carbon sinks of ecosystems, which is essential for achieving national "carbon neutrality" goals. Because the simulation accuracy of ecosystem respiration models is quite different, and the impact of time series information and spatial heterogeneity has not been taken into account in the simulation of net ecosystem exchange (NEE), there is a large uncertainty in the simulation of carbon flux in different terrestrial ecosystems. In this paper, carbon fluxes of typical terrestrial ecosystems were simulated based on traditional empirical respiration models, deep learning methods of time series and spatial information. Based on six traditional empirical models to simulate the respiration of four grassland ecosystems on the Mongolian plateau, we compared the simulation results of different models in different ecosystems and explored the key influencing factors affecting the respiration of grassland ecosystems. Two recurrent neural network models (Gated Recurrent Unit, GRU and Long-short Term Memory, LSTM) were used to simulate NEE, and the effects of environmental factors on NEE were analyzed at different time scales, revealing the lagged effects of biophysical factors on NEE. The lagged effect of biophysical factors on ecosystem carbon fluxes was revealed. Based on the flux footprint analysis model and remote sensing images, we combined the graph neural network model to simulate NEE, and analyze the effects of different combinations of factor transformations on simulation results, which provides important theoretical support to compensate for the influence of heterogeneity on the monitoring accuracy of NEE by eddy covariance. The conclusions are as follows: |
参考文献总数: | 230 |
馆藏地: | 图书馆学位论文阅览区(主馆南区三层BC区) |
馆藏号: | 博0705Z2/23009 |
开放日期: | 2024-06-20 |