- 无标题文档
查看论文信息

中文题名:

 基于Hebb原理和遗忘机制的新型人工神经网络研究    

姓名:

 彭韵茹    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 080910T    

学科专业:

 数据科学与大数据技术    

学生类型:

 学士    

学位:

 理学学士    

学位年度:

 2024    

校区:

 珠海校区培养    

学院:

 文理学院    

第一导师姓名:

 肖红玉    

第一导师单位:

 文理学院    

提交日期:

 2024-06-07    

答辩日期:

 2024-05-16    

外文题名:

 Research on a New Artificial Neural Network Based on Hebb's Principle and Forgetting Mechanism    

中文关键词:

 人工神经网络 ; Hebb原理 ; Hebb学习规则 ; 遗忘机制 ; 类脑计算    

外文关键词:

 Artificial Neural Network ; Hebbian Learning ; Forgetting Mechanism ; Brain-like Computing    

中文摘要:

本研究提出了一种基于Hebb原理和遗忘机制的新型人工神经网络模型,旨在模拟并接近生物大脑的学习与处理机制,即“类脑计算”。该模型深受生物神经科学的启发,尤其是大脑中的神经元连接和学习模式。与依赖传统反馈机制的神经网络不同,该模型强化了频繁协同激活的神经元间的连接,并结合了遗忘机制以降低不常用或不重要连接的权重。实验结果验证了模型设计的合理性和有效性,尤其是在特定分类任务上展现出了高准确率。本研究提出的模型有望在各类人工智能应用中发挥更加关键的作用。

外文摘要:

This study presents a new artificial neural network model based on Hebbian principles and forgetting mechanisms, aimed at simulating and approximating the learning and processing mechanisms of the biological brain, or "brain-like computing". This model is deeply inspired by neuroscience, particularly the neural connections and learning patterns in the brain. Unlike traditional feedback-dependent neural networks, this model enhances the connections between neurons that are frequently co-activated and incorporates forgetting mechanisms to reduce the weights of infrequently used or less important connections. Experimental results validate the rationality and effectiveness of the model design, particularly demonstrating high accuracy in specific classification tasks. This model is expected to play a more crucial role in various artificial intelligence applications.

参考文献总数:

 19    

插图总数:

 12    

插表总数:

 3    

馆藏号:

 本080910T/24003Z    

开放日期:

 2025-06-08    

无标题文档

   建议浏览器: 谷歌 360请用极速模式,双核浏览器请用极速模式