中文题名: | 不同环境乌拉尔甘草群落生态学及其有效成分的环境因子影响研究 |
姓名: | |
保密级别: | 内部 |
学科代码: | 071300 |
学科专业: | |
学生类型: | 博士 |
学位: | 理学博士 |
学位年度: | 2008 |
校区: | |
学院: | |
研究方向: | 植物生态学 |
第一导师姓名: | |
第一导师单位: | |
提交日期: | 2008-06-20 |
答辩日期: | 2008-05-30 |
外文题名: | Study on Community Ecology and Relationships between Environmental Factors and Active Components of Glycyrrhiza uralensis |
中文摘要: |
随着社会经济的快速发展,特别是工业化进程的高速推进,野生植物资源正在以前所未有的速度丧失,许多野生植物物种已经处于濒于灭绝的境地或正在灭绝之中。乌拉尔甘草(Glycyrrhiza uralensis)是我国应用最为广泛的一种药用植物,广泛使用于医药、食品、烟草、化工和化妆品等方面,也是西部地区重要的固沙生态植物。近50年来,我国甘草的野生资源面积减少了50%以上,面临严重的资源危机;同时野生甘草分布区内的生态环境也遭到严重破坏,荒漠化现象十分普遍。研究甘草生态学、遗传学和环境因子对有效成分的影响,对甘草资源的科学保护和利用、人工资源的培育都具有重要意义。本文对我国五个主要产区的100个野生乌拉尔甘草群落进行野外实地调查,并对土镶成分含量及药材有效成分含量进行测定,系统研究了野生乌拉尔甘草群落的基本生态特征,种内遗传多样性以及生态环境与药材有效成分含量之间的关系等内容。(1) TWINSPAN将来自于内蒙古的赤峰、杭锦旗、甘肃民勤、新疆的阿勒泰和喀什的100个甘草样方划分为16个群落,包括:Ⅰ. 甘草+膜果麻黄群落;Ⅱ. 甘草+小甘菊群落;Ⅲ. 甘草+拳蓼群落;Ⅳ. 甘草+叉分蓼群落;Ⅴ. 甘草+油蒿群落;Ⅵ. 甘草+羊草群落; Ⅶ. 甘草+本氏针茅群落; Ⅷ.甘草+鹅绒委陵菜群落;Ⅸ.甘草-新疆针茅群落;Ⅹ.甘草+冷蒿群落;Ⅺ.甘草+日阴苔草群落;Ⅻ.甘草+寸草苔+新疆针茅群落;ⅩⅢ.甘草+耆状亚菊群落;ⅩⅣ.甘草+胀果甘草群落; ⅩⅤ.甘草+银穗羊茅+新疆针茅群落;ⅩⅥ.甘草+新疆针茅+昆仑蒿群落。TWINSPAN的分划过程充分利用了能够反映群落生境特征的指示种及其组合,得到比较客观、合理的分类结果,这样的结果比较全面的描述了中国五个产区野生乌拉尔甘草的植被类型。DCA二维排序的结果与TWINSPAN分类结果较为一致,而且显示出野生甘草植物群落在地理分布上具有一定的规律性。DCA第一轴基本上能够反映出水分梯度的变化,从左向右降水量逐渐减少。DCA第二轴反映的环境梯度主要是温度变化,从下到上群落所处地区温度逐渐降低。用CCA对甘草群落分布的环境因子影响进行分析,第一轴主要反映土壤成分、日照时数和降水量对甘草群落分布的影响。第二轴主要反映植物群落缩在环境的温度梯度,包括年均温、年均最高温和年均最低温。 (2) 用丰富度指数、多样性指数和均匀度指数所测量的甘草不同类型植物群落多样性都表现出基本一致的变化趋势,各指数较好地反映出了甘草不同植物群落类型在物种组成或群落结构方面的差异。将多样性指数与气候、土壤等环境因子进行相关性分析发现,土壤因子中的N、P和气候因子中的空气相对湿度以及温度指标是影响物种多样性的主要因素。DCA排序轴是温度、湿度、光照等各种环境因子所构成的一个综合梯度,以DCA第一轴对样方进行排序能够比单一环境因子更为客观地反映出物种多样性在环境梯度上的分布格局。无论丰富度指数、物种多样性指数还是均匀度指数,和DCA第一轴排序梯度都表现出单峰曲线变化趋势,但多项式拟合显著程度不同:丰富度指数与DCA排序第一轴曲线拟合的显著程度最高。 (3) 应用AFLP分子标记技术研究五个产区乌拉尔甘草的遗传基础,从64对引物组合中筛选出了8对引物组合进行多态性分析,以多态位点百分率最高的E-AAC/M-CAG组合构建五个来源乌拉尔甘草的指纹图谱。UPGM A聚类图表明五种来源乌拉尔甘草被划分为五组,并表现出不同远近的亲缘关系。遗传多样性分析显示,来源于民勤的甘草遗传多样性最大(0.2061),遗传多样性最小的是来源于喀什的甘草(0.1952)。指纹图谱显示出五种来源乌拉尔甘草具有多条特异性谱带,说明由于受到不同地区差异性极大的生长环境的长期影响,五个不同来源乌拉尔甘草经过较长时期的演变之后,已经各自形成了其独有的基因结构。 (4) HPLC(高效液相色谱)法同时测定甘草中甘草酸(Glycyrrhizic acid, GA)和甘草苷(liquiritin, L.)含量,HPLC色谱柱为Symmetry Shield RP18(4.6×250mm, 5um),流动相:A为0.1%磷酸水溶液,B为乙腈进行梯度洗脱,甘草苷276nm和甘草酸250nm的双波长检测,以外标法进行定量测定。各地产甘草的甘草酸含量基本都达到或超出了《国家药典》所规定的大于2%的要求,赤峰产区甘草的甘草酸、甘草苷含量的平均值均为最高(甘草苷1.99%,甘草酸6.93%)。内蒙古杭锦旗地区甘草的甘草酸含量均值最低(3.62%),甘肃民勤产区甘草的甘草酸含量次之(3.85%)。甘草苷含量地区间差异较大,在0.33~2.91之间。喀什、阿勒泰两产区甘草苷含量都较低,大部分低于《国家药典》1%的含量要求,均值只有0.83%和0.87%,低于其他产区甘草苷含量;但两地产甘草中甘草酸含量并不低,均值达到4%以上。(5) 将不同产区甘草的甘草酸含量与对应土壤样本的速效钾K、有效磷P、水解性氮N、PH值和有机质含量进行回归分析发现,五种土壤因子中只有P的回归系数有显著意义。甘草苷与速效钾K、有效磷P、水解性氮N和有机质含量都有较显著的相关性。说明在物种土壤成分中,对甘草酸影响最大的是有效磷P;而速效钾K、有效磷P、水解性氮N和有机质对甘草苷均有较强的影响。同时对甘草酸和甘草苷进行土壤因子的主成分分析中,代表K、P、N和有机质含量综合因素的第一主成分对甘草酸和甘草苷的变化都有显著的影响,回归方程分别为:y1=1.081-0.852x1和y2=0.648-0.149x2。表明各单一土壤成分对甘草酸含量变化作用不显著,影响甘草酸含量变化的在于各个因子的综合作用,而在各单一土壤成分对甘草苷含量变化作用比较显著的情况下,各个因子的综合对甘草酸含量变化的也存在较为显著的影响。
﹀
|
外文摘要: |
With the development of social economy, especially the progress of industrialization, wild plant resources have been reducing at unprecedented speed. Many species of wild plants are endangered and extinguishing. Licorice (Glycyrrhiza uralensis) is one of the most useful Chinese herbal medicines and an important plant species for ecological protection in western China. The distributed areas of wild Glycyrrhiza uralensis are severely destroyed and many of them are becoming deserts. Based on field investigation of 100 samples and lab analyses, the characters of communities, the genetic background and colonial variation within populations, and the relationship between ecological environment and content of medicinal material were studied systematically. (1) TWINSPAN divided the 100 samples of G. uralensis communities from Chifeng and Hangjinqi in Inner Mongolia, Minqin in Gansu, Altay and Kashi in Xinjiang into 16 communities: Ⅰ. G. uralensis + Ephedra przewalskii;Ⅱ. G. uralensis + Cancrinia discoidea;Ⅲ. G. uralensis + Polygonum bistorta;Ⅳ. G. uralensis + Polygonum divaricatum;Ⅴ. G. uralensis + Arterisia Ordosica;Ⅵ. G. uralensis + Aneurolepidium chinense; Ⅶ. G. uralensis + Stipa bungeana;Ⅷ. G. uralensis + Potentilla anserina;Ⅸ. G. uralensis + Stipa sareptana;Ⅹ. G. uralensis + Artemisia frigida;Ⅺ. G. uralensis + Carex pediformis;Ⅻ. G. uralensis + Carex duriuscula+ Stipa sareptana;ⅩⅢ. G. uralensis + Astragalinae trilobata;ⅩⅣ. G. uralensis + G. inflata.; ⅩⅤ. G. uralensis + Festuca logae+ Stipa sareptana;ⅩⅥ. G. uralensis + Stipa sareptana+ Artemisia parvula. The division process of TWINSPAN make objective and reasonable classification results by analyzing indicator species which reflect habitats characters, and clearly descript the wild vegetation types of G. uralensis in five regions of China.The gathered groups of plant quadrates in the space of DCA ordination are consistent with the result of TWINSPAN ,and this revealed a relationship between plant communities and environmenta1 gradients. The axis 1 of the two—dimensional ordination diagram of DCA obviously reflects the gradient changes of humidity, The axis 2 expresses the gradient changes of temperature.The influence of environmental factors on the distribution of Glycyrrhiza uralensis communities by CCA is analyzed: The axis 1 reflects the influence of soil composition, sunlight and precipitation on the distribution of Glycyrrhiza uralensis communities; The axis 2 of CCA obviously reflects the gradient changes of average annual temperature, average annual lowest and highest temperature. (2) Richness index, diversity index and evenness index reflect differences of species in different G. uralensis communities. The correlation analysis between diversity index and environmental factors showes that the N, P, air temperature and relative humidity are the main factors which influence the species diversity. DCA axis colligated temperature, humidity, sunlight and other environmental factors to be an integrated gradient, The axis 1 of the two—dimensional ordination diagram of DCA reflects the distribution pattern of species in the environmental gradient diversity more obviously than a single environmental factor. Richness index, diversity index and evenness index showed single-curve trend when aggressive with DCA axis 1 gradient, while richness index had the highest level of significance. (3) AFLP was used to evaluate the genetic polymorphism of G. uralensis coming from five different habitats. Eight pairs of primer were screened from 64 pairs to analyze DNA polymorphism, and the DNA fingerprints were generated by using the primer pair of E-AAC/M-CAG. UPGMA analysis showed that all the studied populations were clustered into five groups. G. uralensis from Minqin has the largest genetic diversity (0.2061), while G. uralensis from Kashi has the smallest genetic diversity (0.1952). Fingerprints showed G. uralensis of five different groups had multiple specific bands and they had formed unique genetic structures because the influence of different environmental factors for long period. (4) A measuring method of the content of glycyrrhizic acid (GA) and liquritin (L.) in G. uralensis by HPLC was established. The analytical column was Symmetry Shield RP18 (4.6×250mm, 5um), and gradient elution with A: 0.1% H3PO4-H2O, B: HAc-MeOH as mobile phase. The detection wavelength was 276 to L. and 250 to GA. There were large differences in the content of GA and L. in G. uralensis from different habitats. The highest content of GA and L. in G. uralensis comes from Chifeng, while the lowest content of L. in G. uralensis comes from Kasha. The method can be used for determining the content of glycyrrhizin and liquiritin in G. uralensis at the same time.The differences of climate and environment lead to the changes of content of glycyrrhizic acid and liquritin in G. uralensis. (5) The relationship between glycyrrhizic acid (GA), liquritin (L.) and K, P, N, pH value, organic matter content is studied, and the result showed P had greatest influence on the glycyrrhizic acid; K, P, N and organic matter have strong impact on liquritin. By using principal component analysis on the soil environmental factors for both Glycyrrhizin and licorice, we found that the first component (which was a combination of K, P, N and organic contents) had significant impact on glycyrrhizic acid and liquritin.; the regression equation are y1=1.081-0.852x1 and y2=0.648-0.149x2. We concluded that it was not a single soil factor that had significant impact on glycyrrhizic acid but the combination of them, and single soil factor or the combination of them had significant impact on liquritin.
﹀
|
参考文献总数: | 121 |
作者简介: | 主要从事植物生态学、数量生态学研究,博士期间发表核心期刊论文四篇 |
馆藏地: | 图书馆学位论文阅览区(主馆南区三层BC区) |
馆藏号: | 博071012/0807 |
开放日期: | 2008-06-20 |