中文题名: | The strong asymptotic orthogonality of the Möbius function and the polynomial phases |
姓名: | |
保密级别: | 公开 |
学科代码: | 070101 |
学科专业: | |
学生类型: | 硕士 |
学位: | 理学硕士 |
学位年度: | 2007 |
校区: | |
学院: | |
研究方向: | 数论与算术代数几何 |
第一导师姓名: | |
第一导师单位: | |
提交日期: | 2007-06-11 |
答辩日期: | 2007-06-10 |
外文题名: | The strong asymptotic orthogonality of the Möbius function and the polynomial phases |
中文关键词: | |
中文摘要: |
三角和估计在解析数论中占有非常重要的地位,Vinogradov 研究了素变数的三角和估计,这种估计在Waring-Goldbach 问题中有重要应用. Vinogradov 利用圆法和研究线性素变数三角和估计的方法证明了三素数定理。其研究方法后来被称为Vinogradov 方法. B. Green 和T. Tao 引入了强渐进正交性的定义,并证明了Möbius函数与一次和二次相位的强渐进正交性. 本文中我们给出Möbius函数与任意多项式相位的强渐进正交性.
﹀
|
外文摘要: |
The estimate for the exponential sums plays an important part in analytic number theory, and Vinogradov studied the estimate of the exponential sum over primes which has an important application in the Waring-Goldbach problem. His treatment for es-timating exponential sums became a fundamental tool for estimating a large class of sums over primes, and we call this as Vinogradov's method.B. Green and T. Tao introduced the definition of strong asymptotic orthogonality, and they have proved the strong asymptotic orthogonality of the Möbiusfunction and the linear phases and the quadratic phases. Inspired by the work made by B. Green and T. Tao, we obtain a generalization that the Möbiusfunction is strongly asymptotic orthogonal to an arbitrary polynomial.
﹀
|
参考文献总数: | 14 |
馆藏号: | 硕070101/0708 |
开放日期: | 2007-06-11 |