- 无标题文档
查看论文信息

中文题名:

 基于核心素养的数学高考试题与课标一致性研究 ——以2020-2022年的新高考Ⅰ卷、北京卷平面解析几何试题为例    

姓名:

 马绪萌    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 045104    

学科专业:

 学科教学(数学)    

学生类型:

 硕士    

学位:

 教育硕士    

学位类型:

 专业学位    

学位年度:

 2023    

校区:

 珠海校区培养    

学院:

 数学科学学院    

研究方向:

 数学教育    

第一导师姓名:

 曹一鸣    

第一导师单位:

 数学科学学院    

提交日期:

 2023-05-28    

答辩日期:

 2023-05-18    

外文题名:

 A STUDY ON THE CONSISTENCY OF MATHEMATICS ADVANCED PLACEMENT TEST QUESTIONS AND CURRICULUM BASED ON CORE LITERACY ——TAKE THE NEW COLLEGE ENTRANCE EXAMINATION Ⅰ PAPER AND BEIJING PAPER PLANE ANALYTIC GEOMETRY TEST QUESTIONS OF 2020-2022 AS EXAMPLES    

中文关键词:

 普通高中数学课程标准(2017年版2020年修订版) ; 高考试题 ; 平面解析几何 ; 一致性 ; SEC模式    

外文关键词:

 General high school mathematics curriculum standards (2017 edition 2020 revised edition) ; College entrance examination questions ; Plane analytic geometry ; Consistency ; SEC model    

中文摘要:

新高考背景下,新高考Ⅰ卷、北京卷自2020年起不再分文理,高考命题的直接依据为课标。2018年1月,《普通高中数学课程标准(2017年版)》的出台,使得高中数学的课程安排、教师培训、考试评估等方面更加重视培养学生的数学能力和综合素质。在这样的背景下,更体现出基于核心素养的数学高考试题与课程标准一致性分析的重要性。

本文选取《普通高中数学课程标准(2017年版2020年修订版)》(以下简称《课程标准修订版》);2020年、2021年和2022年的北京卷、新高考全国Ⅰ卷(共计6套)中的平面解析几何试题为研究对象,采用SEC模式和适当的统计研究方法,分别从“内容主题-核心素养”、“内容主题”、“核心素养”这三个角度,对六套试卷中的“平面解析几何”试题与《课程标准修订版》中“平面解析几何”内容进行侧重要求及一致性的研究。首先,参考《人教A版选择性必修第一册教师教学用书》及《课程标准修订版》中“平面解析几何”的内容要求,建立“平面解析几何内容主题框架”;其次,基于《课程标准修订版》中的三维评价框架和喻平的知识角度评价框架,结合俞梦飞、章飞等人的应用改造,建立“平面解析几何核心素养测评框架”,从而构建出“内容主题-核心素养”的二维框架;最后,将研究对象进行编码、计数、标准化和数据侧重点及一致性处理后,得到以下结论:

(1)从三个角度看近三年新高考Ⅰ卷、北京卷和《课程标准修订版》在“平面解析几何”内容方面的一致性,基本都是越来越强且较为稳定。

从“核心素养”角度看,北京卷的“平面解析几何”试题与《课程标准修订版》中“平面解析几何”内容的一致性,强于新高考Ⅰ卷的“平面解析几何”试题。

(2)从三个角度看近三年新高考Ⅰ卷、北京卷和《课程标准修订版》在“平面解析几何”内容方面侧重点考查,发现重点突出,但是高考试卷与《课程标准修订版》的侧重点分布的一致程度存在差异。

从“内容主题-核心素养”角度看,侧重点分布的一致程度较强,均突出强调内容主题“椭圆”在“直观想象”素养的“数形结合”中达到“水平二”。

从“内容主题”角度看,在考查“圆锥曲线与方程”方面的一致性程度较强;六套高考试卷对“直线与圆锥曲线的位置关系”的考查程度高于《课程标准修订版》,一致性程度较弱。

从“核心素养”角度看,侧重点分布的一致性较强,均对“直观想象”、“数学运算”和“逻辑推理”这三个素养的要求较高;对“数形结合”和“运用算法”这两个具体表现要求较高;侧重考查的核心素养水平基本集中在水平二,符合数学高考的命题依据要求。

 

外文摘要:

Since 2020, the college entrance examination Ⅰ paper and Beijing paper will no longer be divided into literature and science, and the questions of the college entrance examination will be based on the curriculum standard. The implementation of the General High School Mathematics Curriculum Standards (2017 Edition) in January 2018 has brought about a heightened focus on honing students' mathematical aptitude and the highest standard of quality in the curriculum design, teacher instruction, and assessment of high school mathematics. In this context, the significance of examining the consistency between the core literacy-based mathematics entrance exam queries and the curriculum standards is even more clear.

From the "General High School Mathematics Curriculum Standards (2017 Edition 2020 Revised Edition)" (hereinafter referred to as the "Curriculum Standards Revised Edition"), this paper chooses the plane analytic geometry test questions. For 2020, 2021 and 2022 the SEC model and appropriate statistical research methods are employed to examine the Beijing paper and the New College Entrance Examination National I paper, which comprise six sets, respectively. The study focused on the requirements and consistency of "plane analytic geometry" in six sets of test papers from three perspectives: "content theme-core literacy", "content theme", and "core literacy". First, refer to the content requirements of "plane analytic geometry" in the "Human Education Version A selective compulsory first teacher's teaching book" and the "Revised Curriculum Standard", and establish the "plane analytic geometry content theme framework". Secondly, based on the three-dimensional evaluation framework in the Revised Curriculum Standards and Yu Ping's evaluation framework from the knowledge perspective, combined with the application modification by Yu Mengfei and Zhang Fei, the "core literacy assessment framework of plane analytic geometry" was established, so as to build a two-dimensional framework of "content theme-core literacy". Finally, after coding, counting, standardization and data lateralization and consistency of the study subjects, the following conclusions were obtained:

(1)From three perspectives, the consistency of the content of "plane analytic geometry" in the new college entrance examination Ⅰ paper, Beijing paper and the revised version of the curriculum in the past three years is basically getting stronger and more stable.

From the perspective of "core literacy", the "plane analytic geometry" questions in the Beijing paper are more consistent with the content of "plane analytic geometry" in the Revised Curriculum than the "plane analytic geometry" questions in the New College Entrance Examination I paper.

(2)In the past three years, the focus of "plane analytic geometry" in the new college entrance examination Ⅰ paper, Beijing paper and the revised version of the curriculum was examined from three perspectives, and it was found that the focus was prominent, but there was a difference in the consistency of the focus distribution between the college entrance examination paper and the revised version of the curriculum.

From the perspective of "content theme-core literacy", the distribution of focus is more consistent, highlighting the content theme "ellipse" in the "intuitive imagination" literacy of "numerical integration" to "level 2".

From the perspective of "content theme", there is a strong degree of consistency in the examination of "conic curves and equations". Six sets of college entrance examination papers on "the position of the line and the conic curve" test degree than the revised version of the curriculum, the degree of consistency is weaker.

From the perspective of "core literacy", there is a strong consistency in the distribution of focus, with higher requirements for the three literacies of "intuitive imagination", "mathematical operations" and "logical reasoning". The requirements for the two specific performances of "combining numbers and shapes" and "using algorithms" are high. The focus on the core literacy level of the test is basically concentrated in Level 2, which is in line with the requirements of the proposition basis of the Mathematics Advanced Placement Examination.

参考文献总数:

 44    

馆藏地:

 总馆B301    

馆藏号:

 硕045104/23043Z    

开放日期:

 2024-05-30    

无标题文档

   建议浏览器: 谷歌 360请用极速模式,双核浏览器请用极速模式