中文题名: | 基于多重检验的逐层分布外检测 |
姓名: | |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 025200 |
学科专业: | |
学生类型: | 硕士 |
学位: | 应用统计硕士 |
学位类型: | |
学位年度: | 2024 |
校区: | |
学院: | |
研究方向: | 深度学习 |
第一导师姓名: | |
第一导师单位: | |
提交日期: | 2024-06-03 |
答辩日期: | 2024-05-26 |
外文题名: | MULTITESTING-BASED LAYER-WISE OUT-OF-DISTRIBUTION DETECTION |
中文关键词: | |
外文关键词: | Out-of-Distribution Detection ; Multiple Hypothesis Testing ; Feature Fusio |
中文摘要: |
在开放的现实世界中部署深度学习模型会面临着许多挑战,例如, 很可能会遇到各式各样与训练数据显著不同的测试输入。与训练数据的数据分布相比,在训练数据分布之外的测试样本可能会表现出局部或全局范围内的特征的变化,从而导致测试推理结果与真实结果大相径庭。截至目前,研究人员已经采取了多种方法来应对这种挑战,目的在于去区分异常的测试输入和与原始训练数据同分布的测试输入,我们将其称为分布外检测。然而,之前的大多数研究主要集中在预训练深度神经网络的输出层或倒数第二层,在本文中,我们提出了一种新的框架,即基于多重检验的逐层分布外检测。该框架通过严格的多重假设检验方法来识别不同神经网络层的特征级别的测试输入样本中的分布变化。我们的方法与现有方法的区别在于它不需要修改预训练分类器的结构或者微调,通过大量的实验,我们 |
外文摘要: |
Deploying deep learning models in the open real world will face many challenges. For example, it is likely to encounter a variety of test inputs that are significantly different from the training data. Compared with the data distribution of the training data, test samples outside the training data distribution may show changes in characteristics on a local or global scale, resulting in test inference results that are significantly different from the true results. So far, researchers have adopted a variety of methods to deal with this challenge, aiming to distinguish abnormal test inputs from test inputs that are distributed the same as the original training data, which we call out-of-distribution detection. However, most previous studies mainly focus on the output layer or the penultimate layer of pre-trained deep neural networks. In this paper, we propose a new framework for layer-by-layer out-of-distribution detection based on multiple testing. The framework identifies distribution changes in test input samples at the feature level of different neural network layers through a rigorous multiple hypothesis testing approach. The difference between our method and existing methods is that it does not require modifying the structure or fine-tuning of the pre-trained classifier. Through extensive experiments, we demonstrate that our proposed |
参考文献总数: | 47 |
馆藏地: | 总馆B301 |
馆藏号: | 硕025200/24025Z |
开放日期: | 2025-06-04 |