- 无标题文档
查看论文信息

中文题名:

 基于电致发光和光致发光的空间三结太阳电池辐照损伤机理研究    

姓名:

 鄢刚    

保密级别:

 公开    

学科代码:

 082703    

学科专业:

 核技术及应用    

学生类型:

 博士    

学位:

 工学博士    

学位类型:

 学术学位    

学位年度:

 2022    

校区:

 北京校区培养    

学院:

 核科学与技术学院    

研究方向:

 辐射技术应用    

第一导师姓名:

 王荣    

第一导师单位:

 北京师范大学核科学与技术学院    

提交日期:

 2022-05-30    

答辩日期:

 2022-05-30    

外文题名:

 STUDY ON THE RADIATION DAMAGE MECHANISM OF SPACE TRIPLE-JUNCTION SOLAR CELLS BASED ON ELECTROLUMINESCENCE AND PHOTOLUMINESCENCE    

中文关键词:

 电子辐照 ; 质子辐照 ; 辐照损伤 ; 电致发光 ; 光致发光 ; 非辐射复合中心 ; 载流子复合过程    

外文关键词:

 Electron irradiation ; Proton irradiation ; Radiation damage ; Electroluminescence ; Photolumienscence ; Nonradiative recombination centers ; Carrier recombination processes    

中文摘要:

GaInP、GaAs和Ge三种材料具有晶格匹配的特点,由它们组成的空间GaInP/GaAs/Ge三结太阳电池具有高的转换效率和强的抗辐照性能,是当前航天器的主流太阳电池。目前关于GaInP/GaAs/Ge三结太阳电池的空间辐射效应的研究已经开展了大量的研究工作,但是这些工作大部分是针对太阳电池的宏观性能衰降,而对其微观性能的研究较少。本质上,太阳电池宏观性能的衰降是由于带电粒子与太阳电池相互作用过程中,在电池材料中产生缺陷导致的。并且,由于各结子电池(GaInP、GaAs和Ge)的材料不同,粒子辐照在其内部产生的缺陷不同。电致发光(EL)和光致发光(PL)已经被证实是一种分析材料内部缺陷的简单而且有效的方法。本工作中,我们将采用EL和PL方法对不同能量和注量的电子和质子辐照后的GaInP、GaAs和Ge子电池进行分析,揭示各结子电池的少数载流子扩散长度和非辐射复合寿命随电子和质子能量和注量的变化规律,探测粒子辐照在GaInP、GaAs和Ge子电池内部产生的缺陷,鉴别出非辐射复合中心,并阐明载流子的非辐射复合和辐射复合过程的竞争机制。这些工作将对空间GaInP/GaAs/Ge三结太阳电池的结构优化和抗辐照性能的提升提供支持。本文主要的研究工作如下:

(1)针对带电粒子辐照后的GaInP子电池,我们首先利用室温PL方法计算了少数载流子非辐射复合寿命和扩散长度,揭示了其随辐照粒子能量和注量的变化规律;其次,利用EL方法对辐照在GaInP子电池中诱导产生的非辐射复合中心进行了鉴别,发现H2空穴缺陷是导致GaInP子电池性能衰降的主要原因,并给出了H2空穴缺陷的能级位置和少数载流子俘获截面,分别为EV+0.55 eV和2.9′10-13 cm2;最后,我们利用温度和激光功率密度变化的PL方法对电子辐照的GaInP子电池中的缺陷进行了鉴别并对载流子复合过程进行分析,进一步确定了H2空穴缺陷的热激活能和少数载流子俘获截面,分别为9.21′10-3 eV和1.21′10-14 cm2,确定了导致GaInP子电池PL负热淬灭现象的中间态能级为EC-0.073 eV;我们发现随温度升高,GaInP子电池载流子的主要复合过程实现了从辐射复合到非辐射复合再到辐射复合的变化,并阐明了GaInP子电池中的载流子辐射复合和非辐射复合过程的竞争机制;建立了GaInP子电池的一维载流子跃迁复合模型,并讨论了H2空穴缺陷和中间态能级对载流子复合过程的影响,非辐射复合中心的激活增强了载流子非辐射复合过程,而中间态的激活增强了载流子辐射复合过程;

(2)对于带电粒子辐照后的GaAs子电池,我们首先在室温条件下利用PL方法计算了少数载流子非辐射复合寿命和扩散长度,揭示了其随辐照粒子能量和注量的变化规律;其次,我们利用EL方法对GaAs子电池中的非辐射复合中心进行了鉴别,确定了引起其性能衰降的非辐射复合中心为E5电子缺陷,给出了其能级位置和少数载流子俘获分别为EC-0.96 eV 和5.32′10-12 cm2;最后,我们在不同温度和激光功率密度条件下,利用PL方法对质子辐照后的GaAs子电池进行了进一步分析。确定了导致GaAs子电池性能变化的E5电子缺陷的热激活能为44.47×10-3 eV,并确定了位于EV+0.71 eV处的H3空穴缺陷同样是导致GaAs子电池性能变化的非辐射复合中心,给出了它的热激活能和少数载流子俘获截面分别为14.81×10-3 eV和4.28′10-14 cm2。GaAs子电池中载流子的主要复合过程随着温度的升高从辐射复合过程向非辐射复合过程变化,阐明了GaAs子电池中载流子辐射复合和非辐射复合过程的竞争机制;建立了GaAs子电池的一维载流子跃迁复合模型,阐明了载流子的复合机制,讨论了非辐射复合中心对载流子复合过程的影响。

(3)对于带电粒子辐照后的Ge子电池,我们首先在室温条件下,利用EL方法计算了其开路电压衰降随电子辐照注量的变化,并进一步确定了导致开路电压衰降的非辐射复合中心的能级位置和少数载流子俘获截面,分别为EC-0.38 eV和3.83′10-14 cm2;其次,我们在不同温度条件下,利用PL方法对电子辐照后的Ge子电池的中缺陷进行了鉴别,进一步确认位于EC-0.38 eV处的电子缺陷是导致Ge子电池性能变化的主要原因,并给出其热激活能和少数载流子俘获截面,分别为16.83′10-3 eV和5.84×10-14 cm2,我们还发现位于EC-0.21 eV处的电子缺陷同样是导致Ge子电池性能变化的非辐射复合中心,并给出了它的热激活能和少数载流子俘获截面,分别为44.33′10-3 eV和1.12×10-13 cm2;并确定了导致Ge子电池PL热负淬灭的中间态能级缺陷为位于EC-0.013 eV和EC-0.035 eV的浅能级缺陷;建立了 Ge 子电池的缺陷能级示意图,讨论了载流子辐射复合和非辐射复合过程在缺陷能级间的竞争机制。

外文摘要:

The GaInP/GaAs/Ge triple-junction solar cells composed of GaInP, GaAs and Ge semiconductor materials which have the characteristics of lattice matching is the mainstream solar cell of spacecraft and satellites because of its high conversion efficiency and strong radiation resistance. At present, a lot of research works have been carried out on the spatial radiation effect of GaInP/GaAs/Ge triple-junction solar cells, but most of these works are aimed at the macro performance degradation of solar cells, and there is little research on their micro performance. In essence, the degradation of the macro performance of solar cells is caused by defects produced in the solar cell materials during the interaction between charged particles and solar cell materials. Moreover, the defects generated by particle irradiation are different because of the different materials of each sub-cell (GaInP, GaAs and Ge sub-cell). Electroluminescence (EL) and photoluminescence (PL) have been proved to be simple and effective methods to analyze the internal defects of materials. In this work, we will analyze the defects in GaInP, GaAs, and Ge sub-cells induced by electrons and protons with different energy and fluences based on photoluminescence and electroluminescence measurements, reveal the variation law of minority carrier diffusion length and non-radiative recombination lifetime of each sub-cell with electron and proton energy and fluences, clarify the competition mechanism of non-radiative recombination and radiative recombination processes of carriers, and give the recombination processes of carriers through the defect state energy level. In this paper, the degradation mechanism of performance of space GaInP/GaAs/Ge solar cells is clarified from the micro point of view. These works will provide some support for the structural optimization and radiation resistance improvement of space three junction solar cells. The main research work of this paper as follows:

(1) For the GaInP sub-cell after charged particles irradiation, firstly, the non-radiative recombination life and diffusion length of minority carriers are calculated by room temperature PL method, and their changes with the energy and fluence of irradiated particles are revealed; Secondly, the non-radiative recombination centers induced by charged particle irradiation in GaInP sub-cells are identified by EL measurements. It is determined that the H2 hole trap is the main reason for the performance degradation of the GaInP sub-cell. The energy level and minority carrier capture cross-section of the H2 hole trap are EV + 0.55 eV and 2.9′10-13 cm2, respectively; Finally, we use the temperature and excitation power density dependent PL measurements to identify the defects in the GaInP sub-cell after electron irradiation, and analyze the carrier recombination processes. It is further determined that the thermal activation energy and minority carrier capture cross-section of the H2 hole trap are 9.21′10-3 eV and 1.21′10-14 cm2, respectively. It is determined that the intermediate state leading to the PL negative thermal quenching phenomenon of GaInP sub-cell is EC-0.073 eV. With the temperature rising, the main recombination process of carriers in GaInP sub-cell realizes the transformation from radiation recombination process to non-radiative recombination process and then to radiation recombination process. Thus, the competitive mechanism of carrier radiative recombination and non-radiative recombination in the GaInP sub-cell is clarified. The one-dimensional carrier transition recombination model of the GaInP sub-cell is established, and the effects of the H2 hole trap and intermediate state on the carrier recombination processes in the sub-cell are discussed. The activation of the non-radiative recombination center enhances the carrier non-radiative recombination process, while the activation of the intermediate state enhances the carrier radiative recombination process.

(2)For the charged particles irradiated GaAs sub-cell, we first calculate the non-radiative recombination lifetime and diffusion length of minority carrier by PL method at room temperature, and reveal their variation with the energy and fluence of irradiated particles; Secondly, we use the EL method to identify the non-radiative recombination center in GaAs sub-cell, and determine that the non-radiative recombination center causing its performance degradation is the E5 electron trap. Its energy level and minority carrier capture are EC-0.96 eV and 5.32×10-12 cm2, respectively; Finally, we further analyze the GaAs sub-cell irradiated by protons by PL method at different temperatures and laser power density. It is determined that the thermal activation energy of the E5 electronic trap leading to the change of GaAs sub-cell performance is 44.47×10-3 eV, and it is determined that the H3 hole trap located at EV + 0.71 eV is also the non-radiative recombination center that leads to the change of GaAs sub-cell performance. Its thermal activation energy and minority carrier capture cross-section are 14.81× 10-3 eV and 4.28×10-14 cm2, respectively. The main recombination process of carrier in GaAs sub-cell changes from radiation recombination process to non-radiative recombination process with the increase of temperature, and the competitive mechanism of carrier radiation recombination and non-radiative recombination process in GaAs sub cells is revealed. The one-dimensional carrier transition recombination model of the GaAs sub-cell is established, the carrier recombination mechanism is clarified, and the influence of non-radiative recombination center on the carrier recombination process is discussed. 

(3) For the Ge sub-cell after electron irradiation, we first calculated the change of its open-circuit voltage decay with the electron irradiation fluence by using the EL method at room temperature, and further determined the energy level and minority carrier capture cross-section of the non-radiative recombination center causing the open-circuit voltage decay, which is EC-0.38 eV and 3.83×10-14 cm2, respectively; Secondly, under different temperature conditions, we identified the defects in the Ge sub-cell after electron irradiation by PL method, further confirmed that the electronic defect at EC-0.38 eV is the main reason for the performance change of the Ge sub-cell, and gave its thermal activation energy and minority carrier capture cross-section, which are 16.83×10-3 eV and 5.84×10-14 cm2, respectively. We also found that the electronic defect at EC-0.21 eV is also the non-radiative recombination center leading to the performance change of the Ge sub-cell, The thermal activation energy and minority carrier capture cross-section are given, which are 44.33×10-3 eV and 1.12×10-13 cm2, respectively; It is determined that the intermediate state energy level defect leading to PL thermal negative quenching of the Ge sub-cell is a shallow energy level defect located at EC-0.013 eV and EC-0.035 eV, The schematic diagram of defect energy level of Ge sub-cell is established, and the competition mechanism between defect energy levels in carrier radiative recombination and non-radiative recombination processes is discussed.

参考文献总数:

 146    

馆藏地:

 图书馆学位论文阅览区(主馆南区三层BC区)    

馆藏号:

 博082703/22004    

开放日期:

 2023-05-30    

无标题文档

   建议浏览器: 谷歌 360请用极速模式,双核浏览器请用极速模式