中文题名: | 基于大模型技术的个性化学习资源推荐方法研究 |
姓名: | |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 080717T |
学科专业: | |
学生类型: | 学士 |
学位: | 工学学士 |
学位年度: | 2024 |
校区: | |
学院: | |
第一导师姓名: | |
第一导师单位: | |
提交日期: | 2024-06-12 |
答辩日期: | 2024-05-22 |
外文题名: | A Study on Personalized Learning Resource Recommendation Methods Based on Large Language Model Technology |
中文关键词: | |
外文关键词: | Artificial Intelligence ; Large Language Model ; Personalized Learning ; Recommendation System ; Natural Language Processing |
中文摘要: |
随着信息技术的快速发展,个性化学习资源的推荐系统越来越受到重视。本文研究了基于大模型技术的个性化学习资源推荐方法,旨在通过深度学习和自然语言处理技术,提高学习资源推荐的精确性和个性化水平。本文详细介绍了大模型技术,尤其是Transformer架构及其在教育领域的应用潜力。通过利用现代的预训练语言模型,如GPT和BERT,本研究构建了一个能够理解并处理复杂用户查询的智能推荐系统。 |
外文摘要: |
With the rapid development of information technology, personalized learning resource recommendation systems have gained increasing attention. In order to enhance the precision and personalization of learning resource recommendations, we investigate personalized learning resource recommendation methods based on large language model, deep learning and natural language processing techniques. Initially, we introduce large language model, particularly the Transformer architecture and its potential applications in the educational field. By integrating modern pre-trained language models such as GPT and BERT, we construct an intelligent recommendation system capable of understanding and processing complex user queries. |
参考文献总数: | 32 |
馆藏号: | 本080717T/24013 |
开放日期: | 2025-06-12 |