中文题名: | 紧 spin 流形上 Dirac 方程解的存在性问题 |
姓名: | |
保密级别: | 公开 |
学科代码: | 070101 |
学科专业: | |
学生类型: | 博士 |
学位: | 理学博士 |
学位类型: | |
学位年度: | 2017 |
学校: | 北京师范大学 |
校区: | |
学院: | |
研究方向: | 辛几何拓扑与非线性分析 |
第一导师姓名: | |
第一导师单位: | |
提交日期: | 2017-06-19 |
答辩日期: | 2017-05-12 |
外文题名: | Existence results for solutions to nonlinear Dirac equation on compact spin manifolds |
中文关键词: | |
外文关键词: | Compact spin manifold ; Dirac operator ; Coupled Dirac system ; Strongly indefinite functionals ; Saddle point reduction ; Linking |
中文摘要: |
|
外文摘要: |
In this thesis we study the existence and multiple solutions of the nonlinear Dirac equation (0.0.1) and the nonlinear coupled Dirac system (0.0.2) with a potential on a compact spin manifold. In chapter 2, using the saddle point reduction we obtain an existence result and a multiple one about nontrivial solutions of (0.0.1). In chapter 3, we firstly study the spectrum of operator L and then prove an existence result and an infinitely many multiple one about nontrivial solutions of (0.0.2) via Galerkin type approximations and linking arguments. In chapter 4, we consider (0.0.1) and (0.0.2) with even nonlinear terms. If all eigenvalues of D are nonzero, using an recent generalization of Clark’s theorem we prove that both (0.0.1) and (0.0.2) possess infinitely many solutions. |
参考文献总数: | 85 |
作者简介: | 主要从事辛几何拓扑与非线性分析的研究. |
馆藏地: | 图书馆学位论文阅览区(主馆南区三层BC区) |
馆藏号: | 博070101/17011 |
开放日期: | 2018-03-07 |