- 无标题文档
查看论文信息

中文题名:

 难熔高熵薄膜的载能离子束制备及性能研究    

姓名:

 闫维卿    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 082703    

学科专业:

 核技术及应用    

学生类型:

 博士    

学位:

 工学博士    

学位类型:

 学术学位    

学位年度:

 2024    

校区:

 北京校区培养    

学院:

 核科学与技术学院    

研究方向:

 离子束材料改性    

第一导师姓名:

 英敏菊    

第一导师单位:

 核科学与技术学院    

提交日期:

 2024-05-30    

答辩日期:

 2024-05-20    

外文题名:

 PREPARATION AND PROPERTIES OF REFRACTORY HIGH ENTROPY THIN FILMS PREPARED BY ENERGETIC ION BEAMS    

中文关键词:

 载能离子束 ; 薄膜沉积 ; 浅层离子注入 ; 多主元合金薄膜    

外文关键词:

 Energetic ion beam ; Thin film deposition ; Shallow ion implantation ; Multi principal element alloy thin film    

中文摘要:

难熔高熵材料因其优异的力学性能、耐腐蚀性能和高温稳定性,在航空航天、电子信息、生物医疗和新能源等重要领域表现出极大应用潜力。然而受难熔金属高熔点的制约,难熔高熵材料的有效制备成为当前的研究难点之一,因此实现难熔高熵薄膜材料的高质量可控性制备具有重要意义。载能离子束技术作为一种具有高靶材离化率和高能量密度的薄膜制备技术,适配靶材类别丰富,可有效实现高熵薄膜组分与结构调控;离子轰击引发的“热峰效应”可在原子尺度上产生瞬间局部高温,在制备难熔高熵薄膜方面具有独特优势。本文使用载能离子束技术中的高功率脉冲磁控溅射(HiPIMS)技术以拼接型靶材方法实现了TiZrNbTaV、AlTiCrNbTa和AlTiZrNbTaV难熔高熵合金薄膜及含碳难熔高熵薄膜的高质量制备与组分调控,探究了离子能量和碳含量对薄膜结构和性能的影响;利用多通道磁过滤阴极真空弧(C-FCVA)技术制备了AlTiCrMoV难熔高熵氮化物薄膜,进一步探究高熵效应在耐腐蚀性能中所起的关键作用;基于SRIM(Stopping and range of ions into matter)模拟手段,分析了不同能量和成分的载能离子在沉积层中的射程分布、空位损伤和溅射产额变化规律,探究了入射离子对薄膜生长机制和微观结构的影响规律。本文主要研究结果如下:

1. 实现了TiZrNbTaV难熔高熵合金薄膜及含碳难熔高熵薄膜的可控性制备。TiZrNbTaV难熔高熵合金薄膜在离子能量作用下形成纳米晶结构,具有15.93 GPa的高硬度,归因于高熵合金的晶格畸变强化效应和载能离子束作用下形成的纳米晶结构带来的晶界强化作用。难熔高熵合金薄膜在质子交换膜燃料电池(PEMFC)模拟阴极环境中的最低腐蚀电流密度为6.92×10-9 A/cm2,具有优异的耐腐蚀性能。在薄膜中引入C元素提高了难熔高熵薄膜的力学性能和耐腐蚀性能,优于传统钛-碳二元合金薄膜。含碳难熔高熵薄膜的硬度最高达到34.68 GPa,在PEMFC环境中0.6 V电位下极化24 h后的电流密度最低稳定在3.31×10-7 A/cm2的优异水平。

2. 研究非难熔金属元素对难熔高熵薄膜的影响,制备了AlTiCrNbTa难熔高熵合金薄膜及含碳难熔高熵薄膜。AlTiCrNbTa难熔高熵合金薄膜表现为非晶结构,硬度为13.75 GPa。添加C元素后薄膜成键状态由金属键转变为Me-C键,透射电镜显示了纳米晶结构;提高乙炔流量后薄膜中形成C-C sp2键,拉曼光谱证明了非晶碳结构的均匀析出。结果表明,含碳难熔高熵薄膜的微观结构随着C元素含量的增加由碳化物纳米晶结构向非晶结构转变。随着微观结构致密程度的提高,含碳难熔高熵薄膜在PEMFC工作电位下长期极化后的电流密度相较TiZrNbTaV薄膜进一步优化至2.88×10-8 A/cm2。通过改变氮气通量实现了AlTiCrMoV难熔高熵氮化物薄膜的制备,其相结构随着N含量的增加由合金的体心立方(BCC)结构转变为氮化物的面心立方(FCC)结构;难熔高熵氮化物薄膜在PEMFC环境中经24 h长期极化后表现出了较好的稳定性,表明高熵氮化物继承自高熵合金的高熵效应对薄膜的耐腐蚀性能也起到了积极作用。

3. 设计了具有较大原子半径差异的AlTiZrNbTaV难熔高熵薄膜,实现了耐腐蚀性能的优化和薄膜硬度的提升。AlTiZrNbTaV难熔高熵合金薄膜受严重晶格畸变影响形成了非晶结构,在模拟海洋环境中的腐蚀电位提升至- 0.09 V,点蚀电位升高至1.26 V,腐蚀电流密度优化至1.33×10-8 A/cm2,归因于致密微观结构的形成和钝化行为的增强。引入适量C元素后含碳难熔高熵薄膜硬度可高达41.05 GPa,在碳化物纳米晶强化、固溶强化和较大原子半径差异引起的晶格畸变效应的共同作用下实现了超硬薄膜的制备;提高C含量后含碳难熔高熵薄膜的耐腐蚀性能增强,在PEMFC环境中1.4 V高电位下极化1 h后,极化电流密度稳定在7.13×10-7A/cm2的优异水平。

4. 运用SRIM模拟探究了不同能量和种类的入射离子对难熔高熵薄膜生长机制的影响。入射离子在100~1500 eV不同能量作用下的叠加射程为8.01~26.23 Å,并在10~20 Å的亚表层范围内造成空位损伤;在不同成分下,元素间的溅射产额差异最高为0.23。因此与传统薄膜表面生长方式不同,难熔高熵薄膜表现为亚表层生长。在亚表层生长机制的影响下,不同成分入射离子在均质靶中射程不同,产生的空位损伤和溅射产额差异影响了难熔高熵薄膜的微观结构和组分变化。

外文摘要:

Refractory high-entropy materials exhibit significant potential for applications in critical sectors such as aerospace, electronics, biomedical engineering, and new energy sources, owing to their excellent mechanical properties, corrosion resistance, and high-temperature stability. However, constrained by the high melting points of refractory metals, the effective fabrication of refractory high-entropy materials has become one of the major challenges in current research. Hence, achieving high-quality and controllable fabrication of refractory high-entropy thin films is of great significance.  Energetic ion beam technology, as a film preparation technique known for high target material ionization rates and high energy density, offers broad adaptation to various target material categories and effectively achieves component and structural regulation of high-entropy thin films. The "thermal spike effect" induced by ion bombardment can create instantaneous local high temperatures at the atomic scale, providing unique advantages in the fabrication of refractory high-entropy thin films. This paper utilizes high power impulse magnetron sputtering (HiPIMS) with splicing targets to achieve high-quality preparation and component control of refractory high-entropy alloy thin films including TiZrNbTaV, AlTiCrNbTa, and AlTiZrNbTaV, as well as carbon-containing refractory high-entropy thin films. And the impact of ion energy and carbon content on film structure and properties is explored. Additionally, the co-filtered cathodic vacuum arc (C-FCVA) technology is used to prepare AlTiCrMoV refractory high-entropy nitride films, in order to further explore the critical role of the high-entropy effect in corrosion resistance. The SRIM (Stopping and Range of Ions in Matter) simulation method is used to analyze the range distribution, vacancy loss, and changes in sputtering yield of ions with varying energies and compositions within the deposition layer, in order to explore the effects of ions on the film growth mechanism and microstructure. The main research findings are as follows:

1. Controllable preparation of TiZrNbTaV refractory high-entropy alloy thin films and carbon-containing refractory high-entropy films has been achieved. The TiZrNbTaV refractory high-entropy alloy films form a nanocrystalline structure under the influence of ion energy, exhibiting a high hardness of 15.93 GPa. This hardness is attributed to the lattice distortion strengthening effects and grain boundary strengthening induced by the impacts of the energetic ion beam. These films demonstrated excellent corrosion resistance with a minimum corrosion current density of 6.924×10-9 A/cm² in a proton exchange membrane fuel cell (PEMFC) simulated cathode environment. Introduction of carbon enhanced the mechanical properties and corrosion resistance of the films, with the carbon-containing refractory high-entropy films reaching a maximum hardness of 34.68 GPa and maintaining a current density as low as 3.31×10-7 A/cm² after 24 hours of polarization at 0.6 V in the PEMFC environment.

2. The study examined the effects of non-refractory metal elements on refractory high-entropy thin films, leading to the preparation of AlTiCrNbTa refractory high-entropy alloy films and carbon-containing refractory high-entropy films. The AlTiCrNbTa films exhibited an amorphous structure with a hardness of 13.75 GPa. After adding carbon element, the bonding state of films transitioned from metallic to Me-C bonds, with transmission electron microscopy revealing a nanocrystalline structure. Increased acetylene flow led to the formation of C-C sp² bonds, with Raman spectroscopy confirming the uniform precipitation of amorphous carbon. The results show that the microstructure of carbon-containing refractory high-entropy films shifted from carbide nanocrystalline to amorphous structures as the carbon content increased. The microstructure's increased density further optimized the current density to 2.88 ×10-8 A/cm² under long-term polarization at PEMFC operational potentials compared to the TiZrNbTaV films. Altering nitrogen flow enabled the fabrication of AlTiCrMoV refractory high-entropy nitride films, with the phase structure shifting from the body-centered cubic (BCC) structure of alloys to the face-centered cubic (FCC) structure of nitrides as nitrogen content increased. The refractory high-entropy nitride films exhibited improved stability after 24 hours of polarization in the PEMFC environment, demonstrating that the high-entropy effect inherited from the high-entropy alloys also played a positive role in the corrosion resistance of the film.

3. AlTiZrNbTaV refractory high-entropy thin films with significant atomic radius discrepancies were designed, which facilitated enhancements in both corrosion resistance and film hardness. The AlTiZrNbTaV refractory high-entropy alloy films form an amorphous structure due to severe lattice distortion, showing enhanced corrosion potential to - 0.091 V and pitting potential to 1.264 V in simulated marine environments, with a reduced corrosion current density of 1.328×10-8 A/cm², attributed to the dense microstructure and enhanced passivation behavior. Introduction of a moderate amount of carbon achieves a hardness of 41.05 GPa in the carbon-containing refractory high-entropy films, produced by the synergistic effects of carbide nanocrystalline strengthening, solid solution strengthening, and lattice distortion due to significant atomic radius differences; an increase in carbon content further enhanced the corrosion resistance of these films, stabilizing the polarization current density at 7.13×10-7 A/cm² under high potential of 1.4 V in the PEMFC environment after 1 hour of polarization.

4. The effects of incident ions with different energy and compositions on the growth mechanisms of refractory high-entropy thin films are investigated by the SRIM simulation method. The superimposed range of incident ions under different energy ranging from 100 ~1500 eV is 8.01~26.23 Å. The ions cause vacancy damage within 10 to 20 Å beneath the surface. Variations in sputter yield among different compositions are as high as 0.23. Thus, the refractory high-entropy films exhibit sub-surface growth which is different from traditional film surface growth modes. Under the influence of the sub surface growth mechanism, different components of incident ions have different ranges in homogeneous targets, resulting in vacancy damage and differences in sputtering yield, which affect the microstructure and composition changes of refractory high entropy thin films.

参考文献总数:

 237    

馆藏地:

 图书馆学位论文阅览区(主馆南区三层BC区)    

馆藏号:

 博082703/24008    

开放日期:

 2025-05-30    

无标题文档

   建议浏览器: 谷歌 360请用极速模式,双核浏览器请用极速模式