中文题名: | 数学新高考新型情境问题分析 |
姓名: | |
保密级别: | 公开 |
论文语种: | 中文 |
学科代码: | 070101 |
学科专业: | |
学生类型: | 学士 |
学位: | 理学学士 |
学位年度: | 2021 |
学校: | 北京师范大学 |
校区: | |
学院: | |
第一导师姓名: | |
第一导师单位: | |
提交日期: | 2021-05-26 |
答辩日期: | 2021-05-17 |
外文题名: | Analysis of New Word Problems in New College Entrance Examination Reform of Mathematics |
中文关键词: | |
外文关键词: | new college entrance examination reform ; new word problems ; problem situational level |
中文摘要: |
为研究新高考数学新型情境问题,主要通过对比分析法以及定量分析法对2020年高考理科数学的10套试卷的题目进行统计,得出其考察方式以及考查内容的主要变化,并通过改良的Yeping Li问题情境水平三维评价模型,分析高考改革前后两部分试题中情境问题的类型分布以及情境水平。研究发现,新高考改革前后的问题情境类型分布相差不大;就问题情境水平而言,改革后的高考试题在数学问题解决过程的复杂程度略减,而对于问题情境创设的形象程度略有提高,以及对于学生解题能力的要求相对提高。新型情境问题的设置主要差异在于数学问题解决的复杂程度明显提高,对学生解决问题能力的要求略有提高,而问题情境表述的形象化程度无明显变化,在此基础上,进一步提出数学课程情境问题设置的相关教学建议。 |
外文摘要: |
To study the new word problems of mathematics in the National College Entrance Examination in 2020 when the new college entrance examination reform implemented formally, this article studies 10 sets of papers of science mathematics in 2020 college entrance examination mainly by quantitative analytical method and comparative analysis method, and obtains the main changes of their question types and knowledge point. Through the improved three-dimensional framework of Yeping Li to analyze the type distribution and situation level of word problems in the two parts of the test papers (before and after the new college entrance examination reform). The results reveal that there is little difference in the distribution of problem situations’ types between before and after the reform. In terms of the level of problem situation, the complexity of the process of mathematical problem solving after the reform is slightly reduced, while the visualization degree of problem situation expression is slightly improved, and the requirements for students ' problem solving ability are relatively improved. The main difference in the setting of new word problems is that the complexity of mathematical problem solving is significantly improved, and the requirements for students’ ability to solve problems are slightly increased, while the visualization degree of problem situation expression has no significant change. On this basis, relevant teaching suggestions for the setting of situational problems in mathematics curriculum could be further put forward. |
参考文献总数: | 26 |
作者简介: | 韩冰,北京师范大学数学科学学院数学与应用数学(师范)专业2017级本科生 |
插图总数: | 9 |
插表总数: | 21 |
馆藏号: | 本070101/21172 |
开放日期: | 2022-05-26 |