中文题名: | 四元数Grassmann流形的上同调自同态 |
姓名: | |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 070101 |
学科专业: | |
学生类型: | 硕士 |
学位: | 理学硕士 |
学位类型: | |
学位年度: | 2023 |
校区: | |
学院: | |
研究方向: | 代数拓扑 |
第一导师姓名: | |
第一导师单位: | |
提交日期: | 2023-06-09 |
答辩日期: | 2023-06-01 |
外文题名: | Endomorphisms of cohomology of quaternionic Grassmann manifolds |
中文关键词: | 四元数 Grassmann 流形 ; -理论 ; 陈特征 ; Gr ̈ obner 基 |
外文关键词: | quaternion Grassmann manifold ; -theory ; Chern character ; Gr ̈ obner basis |
中文摘要: |
设 X 和 Y 是拓扑空间,对于上同调函子 H *,有 Boardman 映射 H *:[ X , Y ]→ Hom ( H *( Y ), H *( X ))。对于拓扑 K ﹣理论,考虑 Boardman 映射 K *:[ X , Y ]→ Hom Adams ( K *( Y ), K *( X )),其中 HomAdams ( K *( Y ), K ( X ))是 K ( Y )到 K *( X )与 Adams 运算交换的同态的集合。 |
外文摘要: |
Let X and Y be topological spaces.There is a Boardman map H* : (XYHom(H*(Y), H*(X)) for the cohomology funtor H*. For K-theory, take Boardman map K*[X, Y] 一> Hom Adams(K*(Y), K*(X)) into account. Here Hom Adams(K*(Y), K*(X)) is the set of homomorphisms between K*(Y) and K*(X) which commute with the Adams operations.We concentrate on the image of the homotopy set of the self-maps of Grassmann manifoldsGk(Hn) under the map H*. Almost all endomorphisms of H*(Gk(Hn)) are Adams homomorphisms. That is, there exists l e Z, for all a e H4i(Gk (Hn)), f(a) = l. We denote deg( f) = lThere is a homomorphism fk = Ch-i fCh Ch Hom Adams(K*(Y), K*(X)) corresponding to f through Chern character Ch : K*(X) -> H*(X;Q). If f can be realized as a self-map ofGk(Hn), fk : K(Gk(Hn))一> K(G k(Hn)) must be a homomorphism with integral coefficients. For this, some conditions about deg( f) must be satisfied. |
参考文献总数: | 18 |
作者简介: | 北京师范大学数学科学学院2023届基础数学代数拓扑方向硕士毕业生谷佩齐 |
馆藏号: | 硕070101/23011 |
开放日期: | 2024-06-08 |