- 无标题文档
查看论文信息

中文题名:

 互联网学习资源的语义搜索关键技术研究    

姓名:

 王学松    

保密级别:

 公开    

学科代码:

 040110    

学科专业:

 教育技术学(可授教育学 ; 理学学位)    

学生类型:

 博士    

学位:

 理学博士    

学位年度:

 2010    

校区:

 北京校区培养    

学院:

 教育技术学院    

研究方向:

 知识科学与知识工程    

第一导师姓名:

 周明全    

第一导师单位:

 北京师范大学    

提交日期:

 2010-06-22    

答辩日期:

 2010-06-01    

外文题名:

 The Research of Semantic Search Engine for Learning Resources    

中文摘要:
数字化学习资源相对于传统教学材料而言,在资源种类、数量和学习方式上都存在着强大的优势。数字化学习迫切需要对互联网教学资源的重用和共享方法,带有语义的搜索引擎技术可以为学习对象管理和定位提供有效的方法,提高学习资源的利用率。 本论文主要研究面向教学和学习应用,具有智能化特征的互联网教学资源的语义搜索引擎。具体研究内容主要包括:教学资源的学习对象语义构建及描述组织方法;互联网学习资源的语义发现采集与整理;互联网学习资源的语义标注、语义关联及索引方法;面向教学资源的相似度计算和检索排序方法。论文主要包括以下创新点:(1)研究教学资源的学习对象关系及语义描述方法,构建学习对象领域本体框架及生产方法。依据学习对象理论,分析学习资源特点,研究学习资源的学习对象构建、语义描述及组织方法;以本体描述方法对学习资源进行描述,形成包括通用本体、领域本体、教学本体、结构本体的学习对象本体框架,研究各本体的构造和创建方法;构建面向搜索引擎的学习对象ONT-LOSE本体OWL描述;(2)研究互联网学习资源内容和结构特点,形成多方法的学习资源本体标注方法。研究互联网学习资源的语义标注方法,实现基于本体的学习资源标注;对学习资源内容进行分析,形成资源的本体分类标注、关键词标注和结构性标注方法;分析教学学科体系和教材特点,通过语义描述,实现学习资源的分类本体描述;利用领域本体Ontology实现学习资源的表达,根据领域概念间关系和语义相似度,实现领域本体的标注;(3)研究互联网学习资源的语义定向发现采集方法,形成语义关联索引策略。利用本体概念相关性,计算网页内容和链接词的语义关联度,实现学习资源的语义发现和定向采集;建立资源的语义描述和语义关联描述,实现基于语义的网站发现和扩展;研究教学资源的语义关联关系与语义索引方法,利用语义概念形成基于学习对象语义和关键字的教学资源联合索引,建立资源的语义描述和语义关联索引,实现语义检索和查询。
外文摘要:
Modern E-learning technology is supported by digital learning resources very well. There are lots of digital materials in different kinds and types on the Internet. An effective method is urgently needed for sharing and reusing of these learning resources. To improve the application of learning resources, an innovation method named as semantic search engine technology is proposed. The semantic search engine is employed to achieve the effective learning object management and retrieval.In this thesis, the key point of semantic search engine on learning resources is researched. The following issues are discussed, which include: Semantic description of learning resources, construction of ontology in different perspectives, organization of learning objects and materials, learning resources discovery using semantic and ontology methods, Learning resource analysis and annotation, association index building methods. The way of Learning resources similarity calculation, user inquiries and sorted for teaching and learning applications. This thesis includes the following innovations: (1) Present a learning object ontology framework named ONT-LOSE, which includes general ontology, domain ontology, pedagogy ontology, and structure ontology. Semantic and ontology methods are employed to describe learning resources and learning objects. The semantic description method using OWL language is used to express learning objects.(2) Propose the Ontology-based annotation methods, which using multi-view clues. Learning resources is annotated by content analysis, text classification, keyword similary and structural extraction; Link relation and semantic similarity is used to obtain the domain ontology. Text classification method is improved to achieve the domain ontology. DOM Analysising method is used to obtain the structure ontology.(3) Propose a resources discovery method, which uses semantic association method to find the Internet learning objects. The web resources with similar page content and relevance semantic links are downloaded. Related resources are discovered and expanded by semantic filter. Combined semantic index is built by associating ontology concepts and text keywords. The semantic retrieval and query method is based on semantic description and similiarity of resources associated with the index.
参考文献总数:

 130    

作者简介:

 攻读博士期间, 曾完成的科研项目涉及领域包括:海量互联网搜索引擎技术、语义网及本体、图形图像处理及虚拟现实技术研究。参与国家及省部级科研项目研究7项,其他项目2项;参与知识产权申请发明专利1项、软件著作权4项,参与图书编著3本,第一作者核心以上期刊论文3篇。    

馆藏地:

 图书馆学位论文阅览区(主馆南区三层BC区)    

馆藏号:

 博040110/1002    

开放日期:

 2010-06-22    

无标题文档

   建议浏览器: 谷歌 360请用极速模式,双核浏览器请用极速模式