- 无标题文档
查看论文信息

中文题名:

 基于可调谐激光吸收光谱技术火灾早期预警多组分气体检测系统研究    

姓名:

 马琳    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 070207    

学科专业:

 光学    

学生类型:

 硕士    

学位:

 理学硕士    

学位类型:

 学术学位    

学位年度:

 2023    

校区:

 北京校区培养    

学院:

 物理学系    

研究方向:

 激光光谱    

第一导师姓名:

 周欣    

第一导师单位:

 物理学系    

提交日期:

 2023-06-08    

答辩日期:

 2023-06-01    

外文题名:

 Multi-component gas detection system for fire early warning based on Tunable laser absorption spectroscopy    

中文关键词:

 火灾早期预警 ; 标识性气体检测 ; 可调谐二极管激光吸收光谱技术 ; 多反气室    

外文关键词:

 Fire early warning ; Identifying gas detection ; Tunable Diode Laser Absorption Spectroscopy ; Multipass cell    

中文摘要:

随着我国经济社会的高速发展,近年来火灾重特大事故频发,后果严重,给国家和人民财产造成巨大损失,如何实现火灾事故的早期准确预警是亟待解决的关键技术问题。在发生火灾时,常常会出现一些特征明显,规律突出的气体,比如:CO、CH4、C2H2、C2H4等,往往把这些气体称之为标识性气体。通过高精度测量标识性气体的浓度可以实现对火灾的早期预警,能够从源头减少人员伤亡以及降低财产损失,避免重特大事故的发生。可调谐激光吸收光谱技术是目前最先进的气体探测方法之一,它具有测量精度高、响应速度快、不受背景气体干扰等优点,在近二十年得到了迅速的发展,已成功应用于石油化工、环境监测、工业过程分析等诸多领域。以可调谐二极管激光吸收光谱技术(Tunable diode laser absorption spectroscopy,TDLAS)为基础,进行火灾早期预警领域中多组分气体检测技术的研究,可以为火灾事故精准预警、事故态势研判提供量化科学依据,有望降低重特大火灾事故,具有极高的科研价值和巨大的应用前景。本文从火灾预警应用场景需求出发,选取 CO、CH4和 C2H2三种常见典型火灾标识性气体作为研究对象,对谱线选择、测量方案、光学系统设计和数据处理算法进行研究,成功开发出火灾早期预警多组分气体检测系统。本文主要内容如下:

1. 概述了课题研究意义以及研究现状,介绍了几种应用范围较为广泛的气体检测技术,详细阐述了 TDLAS 技术的多处优点,以及在火灾早期预警的研究现状。

2. 介绍了 TDLAS 技术的基本理论和方法,介绍了 Beer-Lambert 定律、线强度和吸收谱线线型函数,阐明了直接吸收光谱技术,基于该技术设计并搭建了 C2H2测量系统,选用500 ppm·m C2H2标准气室开展实验研究,该实验系统测量到的 C2H2标准气室浓度为 493.7 ppm·m,误差为 1.26 %。并介绍了锁相放大器的基本原理、谐波检测原理以及波长调制光谱技术原理,进行了 CO、CH4和 C2H2三种气体的吸收谱线模拟,并说明了波长选择的原则。

3. 为进一步提高系统测量精度,采用波长调制光谱技术结合 Herriott 型多反气室和新型密集光斑多反气室的实验方案,设计并开展了 CO、CH4和 C2H2三种典型火灾标识性气体的高精度测量,并将三个多反气室测量系统集成为一个多组分气体检测模块,在实验室内模拟燃烧场景,进行室内环境中 CO、CH4和 C2H2三种火灾标识性气体浓度的同时监测实验,得到了不同燃烧物对应的CO、CH4和 C2H2三种火灾标识性气体浓度变化趋势图。

4. 为了更灵敏的检测到火灾标识性气体浓度的变化,实现更为早期的火灾预警,我们在第三章工作的基础上进一步增加了多反气室的光程长度。设计了两种矩阵型光斑多反气室,光程长度分别为 57.6 m 和 72 m。同样地,在实验室内模拟燃烧场景,进行室内环境中CO、CH4和 C2H2三种火灾标识性气体浓度的分别监测和同时监测实验。对应纸张、无烟炭、煤块和塑料袋四种不同的燃烧物,得到了 CO、CH4和 C2H2三种火灾标识性气体浓度随时间的变化趋势图。在分别点燃实验中四种不同可燃物的初期,有烟气产生但还没有明火时,均检测到了不同组分标识性气体浓度的变化。

综上所述,本论文开发的基于可调谐激光吸收光谱技术火灾早期预警系统,可以实现多种火灾标识性气体的高精度探测,在重特大火灾灾害智能感知和早期预警领域具有潜在的应用前景。

外文摘要:

With the rapid development of our economy and society, fire accidents have occurred frequently in recent years with severe and serious consequences, which have caused great losses to the country and people's property. In the event of a fire, there are often some gases with obvious characteristics and prominent rules, such as: CO, CH4, C2H2, C2H4, etc., and these gases are often called identification gases. Early warning of fire can be realized through high precision measurement of the concentration of identifying gas, which can reduce casualties and property losses from the source and avoid the occurrence of major accidents. Tunable laser absorption spectroscopy is one of the most advanced gas detection methods at present. It has the advantages of high measurement accuracy, fast response speed and no interference from background gas. It has been rapid development in the past two decades and has been successfully applied in many fields such as petrochemical industry, environmental monitoring and industrial process analysis. Based on tunable diode laser absorption spectroscopy (TDLAS), the research of multi-component gas detection technology in the field of fire early warning can provide quantitative scientific basis for accurate early warning of fire accidents and accident situation research and judgment, which is expected to reduce heavy and extraordinarily large fire accidents, which has high scientific research value and huge application prospects. Based on the requirements of fire warning application scenarios, in this thesis, we select CO, CH4 and C2H2, three common typical fire identifying gases, as the research object, studies spectral line selection, measurement scheme, optical system design and data processing algorithm, and successfully develops a multi-component gas detection system for fire early warning. The main contents of this thesis are as follows:

1. The research significance and research status of the topic are summarized, several gas detection technologies with a wide range of applications are introduced, and the advantages of TDLAS technology as well as the research status of fire early warning are elaborated.

2. The basic theory and method of TDLAS technology are introduced, the Beer-Lambert law, linear intensity and absorption spectral line type function are introduced, the direct absorption spectroscopy technology is clarified, and the C2H2 measurement system is designed and built based on this technology. The 500 ppm·m C2H2 standard cell was used to carry out experimental research. The concentration of C2H2 standard chamber measured by the experimental system was 493.7 ppm·m, with an error of 1.26 %. The basic principles of phase-locked amplifier, harmonic detection and wavelength modulation spectroscopy are introduced. The absorption spectra of CO, CH4 and C2H2 gas are simulated, and the principle of wavelength selection is explained.

3. In order to further improve the measurement accuracy of the system, high-precision measurement of CO, CH4 and C2H2 are designed and carried out by combining the experimental scheme of Herriott type multipass cell and new dense spot multipass cell with wavelength modulation spectroscopy. Three multipass cell measurement systems were integrated into a multi-component gas detection module, and the combustion scene was simulated in the laboratory to carry out the simultaneous monitoring experiment of the concentrations of three fire identifying gases (CO, CH4 and C2H2) in the indoor environment. The trend charts of the concentrations of three fire identifying gases (CO, CH4 and C2H2) corresponding to different combustor were obtained.

4. In order to more sensitively detect changes in the concentration of fire identifying gas and realize earlier fire warning, we further increase the optical path length of the multipass cell on the basis of the work in Chapter 3. Two kinds of matrix type light spot multipass cell with optical path lengths of 57.6 m and 72 m were designed.Similarly, the simulation of the combustion scene in the laboratory was carried out to monitor the concentration of CO, CH4 and C2H2 in the indoor environment respectively and simultaneously. Corresponding to paper, anthracite, coal and plastic bags, the concentration trend of three fire identification gases, CO, CH4 and C2H2, was obtained over time. In the initial stage of four different combustibles in the separate ignition experiment, when there is smoke but no open flame, the change of the concentration of different components of the identifying gas was detected.

In summary, the fire early warning system developed in this thesis based on tunable laser absorption spectroscopy technology can realize the high-precision detection of a variety of fire identifying gases, and has potential application prospects in the field of intelligent perception and early warning of major and major fire disasters.

参考文献总数:

 65    

参考文献:

[1] 殷聪. 基于 TDLAS 煤自燃多组分指标气体的识别[D]. 西安科技大学,2018.

[2] 梁博. 基于可调谐激光技术的煤矿用乙烯痕量气体检测系统研究[D].煤炭科学研究总 院,2017.

[3] Raza M , Ma L , Yao S , et al. High-temperature dual-species (CO/NH3) detection using calibration-free scanned-wavelength-modulation spectroscopy at 2.3 μm[J]. Fuel, 2021,305(12):121591.

[4] Li G , Jiang Q , Hua C , et al. Temperature and Pressure Insensitive Spectroscopic Method for Measuring 13CH4 during Oil and Natural Gas Drilling Operations[J]. Frontiers in Physics, 2021,9.

[5] Wang Y , Wei Y , Liu T , et al. TDLAS Detection of Propane/Butane Gas Mixture by Using Reference Gas Absorption Cells and Partial Least Square Approach[J]. IEEE sensors journal,2018(20):18:8587-8596.

[6] Hu S , Tu X , Chen S , et al. Study on CO concentration measurement of TDLAS based on baseline nonlinear improvement[C]. 2020 IEEE International Conference on Power, Intelligent Computing and Systems (ICPICS). IEEE, 2020:343-347.

[7] Wang Z , Chang J , Yu H , et al.Multi-Component and Multi-Point Trace Gas Sensing in Wavelength Modulation Spectroscopy Based on Wavelength Stabilization[J]. Photonic Sensors,2019,9(4):376-387.

[8] Wei M , Ye Q H , Kan R F , et al. Spectroscopy system based on a single quantum cascade laser for simultaneous detection of CO and CO2.[J]. Chinese Physics B, 2016.

[9] Jeon M G , Hong J W , Doh D H , et al. A study on two-dimensional temperature and concentration distribution of Propane-Air premixed flame using CT-TDLAS[J]. Modern Physics Letters B, 2020,34(07n09):2040020.

[10] 宫卫华. 基于开放光路可调谐半导体激光吸收光谱技术气体遥测关键技术研究[D]. 山东大学, 2019.

[11] 孙娟. 基于外腔式量子级联激光器的激光光谱技术研究[D]. 安徽大学, 2018. [12] 马吉. 天然气高压管道泄漏扩散检测及其应用研究[D]. 华北科技学院,2018.

[13] Li G , Ma K , Jiao Y , et al. Performance enhancement of DFBL based near-infrared CH4 telemetry system using a focus tunable lens[J]. Microwave and optical technology letters, 2021,63(4):1147- 1151.

[14] Feng Y , Chang J , Chen X , et al.Application of TDM and FDM methods in TDLAS based multi-gas detection[J]. Optical and Quantum Electronics,2021,53(4):1- 11.

[15] Zheng F , Qiu X , Shao L , et al. Measurement of nitric oxide from cigarette burning using TDLAS based on quantum cascade laser[J]. Optics & Laser Technology, 2020, 124:105963.

[16] Cui R , Dong L , Wu H , et al. Three-Dimensional Printed Miniature Fiber-Coupled Multipass Cells with Dense Spot Patterns for ppb-Level Methane Detection Using a Near-IR Diode Laser[J]. Analytical Chemistry, 2020, 92(19):13034- 13041.

[17] Weisberger J M. Non-Intrusive Laser Absorption Diagnostics for Combustion Environments[D]. State University of New York at Buffalo, 2020.

[18] Li C , Shao L , Jiang L , et al. Simultaneous Measurements of CO and CO2 Employing Wavelength Modulation Spectroscopy Using a Signal Averaging Technique at 1.578μm:[J].Applied Spectroscopy, 2018, 72(9):1380- 1387.

[19] Gao G . Sensitive Detection of Methane Using Tunable Multimode Diode Laser Absorption Spectroscopy at 1.675 µm[J]. Journal of Applied Spectroscopy, 2016, 83(5):730-735.

[20] Raza M , Ma L , Yao C , et al. MHz-rate scanned-wavelength direct absorption spectroscopy using a distributed feedback diode laser at 2.3 µm[J]. Optics & Laser Technology,2020(130-):130:106344.

[21] Wang W , Zhang Z . Study on Trace Detection Method of Ammonia Escape Based on TDLAS[C]. 2018 International Symposium on Computer, Consumer and Control (IS3C).2018:294-297.

[22] Bomse D S , DC Hovde, Chen S J , et al. Early fire sensing using near-IR diode laser spectroscopy[J]. Proceedings of SPIE - The International Society for Optical Engineering, 2002.

[23] Wei Y , Chang J , Lian J , et al. A coal mine multi-point fiber ethylene gas concentration sensor[J]. Photonic Sensors, 2015, 5(1):67-71.

[24] Jiang Y L , Li G , Yang T , et al. Development of gas fire detection system using tunable diode laser absorption spectroscopy[J]. IOP Conference Series Earth and Environmental Science,2017, 52:012092.

[25] Chen J , Hangauer A , Strzoda R , et al. VCSEL-based calibration-free carbon monoxide sensor at 2.3μm with in-line reference cell[J]. Applied Physics B, 2011, 102(2):425-425.

[26] 袁得春. 基于可调谐激光吸收光谱法的林火早期探测技术研究[D]. 东北林业大学,2017.

[27] Wang Z , Li Y , Zhang T , et al. A long-term stable monitoring system for atmospheric carbon monoxide based on 2.3 μm laser absorption[J]. Journal of Physics: Conference Series,2018, 1065:252017-.

[28] Dang J , Yu H , Fang S , et al. An early fire gas sensor based on 2.33 μm DFB laser[J].Infrared Physics & Technology, 2018, 92:84-89.

[29] Deng J , Chen W L , Liang C , et al. Correction model for CO detection in the coal combustion loss process in mines based on GWO-SVM[J]. Journal of Loss Prevention in the Process Industries, 2021(5):104439.

[30] Li N , Qiu X , Wei Y , et al. A portable low-power integrated current and temperature laser controller for high-sensitivity gas sensor applications.[J]. The Review of scientific instruments,2018, 89(10):103103.

[31] Zhang T , Jiang T , Ning Y , et al. High Precision Synchronous Detection Method for Multi-gas detection using a Single Laser[J]. Journal of Physics Conference Series, 2018,1065(25):252013.

[32] Qiu X , Wei Y , Li J , et al. Early detection system for coal spontaneous combustion by laser dual-species sensor of CO and CH4 [J]. Optics & Laser Technology, 2020, 121:105832-.

[33] 安韬儒, 姚囝. 基于 TDLAS 的 KJ428 型束管监测系统应用研究[J]. 煤炭技术,2022(041-001).

[34] Mao W, Wang W , Dou Z , et al. Fire Recognition Based On Multi-Channel Convolutional Neural Network[J]. FIRE TECHNOLOGY, 2018, 54(2):531-554.

[35] Wang Z , Zhou W , Kamimoto T ,et al. Two-Dimensional Temperature Measurement in a High-Temperature and High-Pressure Combustor Using Computed Tomography Tunable Diode Laser Absorption Spectroscopy (CT-TDLAS) with a Wide-Scanning Laser at 1335- 1375 nm:[J].Applied Spectroscopy, 2020, 74(2):210-222.

[36] 黄安, 许振宇, 夏晖晖, et al. 波长调制吸收光谱技术的燃气轮机燃烧室温度组分二维 分布测量方法[J]. 光谱学与光谱分析, 2021,41(4):1144- 1150.

[37] Xin Z . Diode laser absorption sensors for combustion control[J]. Papers in Regional Science, 2005.

[38] Wei T , Wu H , Dong L , et al. Palm-sized methane TDLAS sensor based on a mini-multi-pass cell and a quartz tuning fork as a thermal detector[J]. Optics Express, 2021,29(8):12357- 12364.

[39] 程禾尧. 波长调制光谱技术中免标定气体检测方法的研究及优化[D]. 东南大学, 2017.

[40] 姚华. 采用可调谐激光吸收光谱技术遥测甲烷气体浓度的研究[D]. 浙江大学, 2011.

[41] 吕鸿浩. 基于 TDLAS 技术的光路校正系统研究[D]. 华北电力大学(北京), 2019.

[42] 李鑫安. 基于 TDLAS 的畜禽舍内氨气浓度检测系统研究[D]. 华中农业大学,2020.

[43] 樊鸿清. 基于 TDLAS 的非合作目标二氧化碳检测系统设计[D]. 天津工业大学,2020.

[44] Xin F , Li J , Guo J , et al. Measurement of Atmospheric CO2 Column Concentrations Based on Open-Path TDLAS[J]. Sensors, 2021, 21(5):1722.

[45] 支凯艳. 基于可调谐二极管激光吸收光谱技术的火灾预警方法研究[D]. 西安理工大 学, 2016.

[46] Yang H , Bu X , Cao Y , Song Y. A methane telemetry sensor based on near-infrared laser absorption spectroscopy[J]. Infrared Physics and Technology,2021, 114(12):103670.

[47] Peng Z , Du Y , Ding Y . Highly Sensitive, Calibration-Free WM-DAS Method for Recovering Absorbance—Part I: Theoretical Analysis[J]. Sensors, 2020, 20(3):681-.

[48] D. Herriott , H. Kogelnik , R. Kompfner. Off-Axis Paths in Spherical Mirror Interferometers[J]. Applied Optics, 1964,3(4):523-526.

[49] Kong R, Sun T, Liu P, et al. Optical design and analysis of a two-spherical-mirror-based multipass cell[J]. Applied Optics, 2020, 59(6):1545- 1552.

[50] Tian X , Cao Y , Chen J , et al. Dual-Gas Sensor of CH4/C2H6 Based on Wavelength Modulation Spectroscopy Coupled to a Home-Made Compact Dense-Pattern Multipass Cell[J].Sensors, 2019, 19(4):820-832.

[51] Liu K , Lei W , Tu T , et al. Highly sensitive detection of methane by near-infrared laser absorption spectroscopy using a compact dense-pattern multipass cell[J]. Sensors and Actuators B Chemical, 2015, 220:1000- 1005.

[52] Shao L , Fang B , Zheng F , et al. Simultaneous detection of atmospheric CO and CH4 based on TDLAS using a single 2.3 µm DFB laser[J]. Spectrochimica acta, Part A. Molecular and biomolecular spectroscopy, 2019(222-):222:117118.

[53] Liu J, Chen Y, Xu L, et al. Generalized optical design and optimization of multipass cells with independent circle patterns based on the Monte Carlo and Nelder-Mead simplex algorithms[J]. Optics Express, 2021, 29(13): 20250-20261.

[54] Kong R , Liu P , Zhou X. Decomposition-based multiobjective optimization for multipass cell design aided by particle swarm optimization and the K-means algorithm.[J]. Optics express,2022,30(7):10991- 10998.

[55] Kong R , Liu P , Zhou X. Optical design of Lissajous pattern multipass cells with multiple spherical mirrors based on particle swarm optimization.[J]. Optics

express,2022,30(14):24443-24451.

[56] Hudzikowski A , Guszek A , Krzempek K , et al. Compact, spherical mirror-based dense astigmatic-like pattern multipass cell design aided by a genetic algorithm[J]. Optics express,2021, 29(16):26127-26136.

[57] WHITE, John U. Long Optical Paths of Large Aperture[J]. Journal of the Optical Society of America (1917- 1983), 1942, 32(5):285-288.

[58] Chernin S M , Barskaya E G. Optical multipass matrix systems[J]. Applied Optics, 1991,30(1):51-58.

[59] Chernin S M , Mikhailov S B , Barskaya E G. Aberrations of a multipass matrix system.[J].Applied optics, 1992,31(6):765-769.

[60] Chernin S M. Multipass matrix systems for diode laser spectroscope[J]. Infrared Physics & Technology, 1996, 37(1):87-93.

[61] Chernin S M. Development of optical multipass matrix systems[J]. Journal of Modern Optics, 2001,48(4):619-632.

[62] Semen, Chernin. Promising version of the three-objective multipass matrix system.[J].Optics express, 2002, 10(2):104- 107.

[63] Guo Y , Sun L Q , Yang Z , et al. Generalized design of a zero-geometric-loss, astigmatism-free, modified four-objective multipass matrix system[J]. Appl Opt, 2016,55(6):1435- 1443.

[64] Guo Yin , Sun Liqun. Compact optical multipass matrix system design based on slicer mirrors.[J]. Applied optics,2018,57(5):1174- 1181.

[65] Xia J , Feng C , Zhu F , et al. A sensitive methane sensor of a ppt detection level using a mid-infrared interband cascade laser and a long-path multipass cell[J]. Sensors and Actuators B Chemical, 2021, 334(30):129641.

馆藏号:

 硕070207/23008    

开放日期:

 2024-06-07    

无标题文档

   建议浏览器: 谷歌 360请用极速模式,双核浏览器请用极速模式