中文题名: | 对一类具强Allee效应的底栖-漂移模型动力学性质的分析(博士后研究报告) |
姓名: | |
保密级别: | 公开 |
论文语种: | 英文 |
学科代码: | 070104 |
学科专业: | |
学生类型: | 博士后 |
学位: | 理学博士 |
学位类型: | |
学位年度: | 2022 |
校区: | |
学院: | |
研究方向: | 微分方程与动力系统 |
第一导师姓名: | |
第一导师单位: | |
提交日期: | 2022-02-23 |
答辩日期: | 2022-02-23 |
外文题名: | Analysis of a Reaction-Diffusion Benthic-Drift Model with Strong Allee Effect Growth |
中文关键词: | |
外文关键词: | Reaction-diffusion-advection ; benthic-drift ; strong Allee effect ; persistence ; extinction |
中文摘要: |
由于个体向下游漂移引起的种群数量的不断减少,从而引发的水生种群如何在河流中持续存在的问题被称为“漂移悖论”。我们研究了具有和不具有底栖阶段的种群的生长,并考虑空间非齐次的增长函数。当物种遵循logistic类型增长时,已有许多经典的结果。而具有Allee效应增长的物种则较少被注意。在本文中,个体在环境中的随机运动由被动扩散刻画,河流中的定向运动则由对流刻画。本文从严格的理论研究和数值模拟两个方面来说明具有Allee效应生长的物种的种群动态。 我们引入了一种底栖-漂移模型,该模型将漂流区和栖息区的交互行为与种群动态联系起来。在该模型中,栖息地被分成两个有交互行为的区室,漂移区和底栖区。种群也被分为居住在底栖区的个体和分散在漂移区中的个体。我们明确讨论了流速,横截面积,两个区室间的交互效率和河流异质性对种群持久性和灭绝的影响。 |
外文摘要: |
The question how aquatic populations persist in rivers when individuals are constantly lost due to downstream drift has been termed the ``drift paradox." Reaction-diffusion-advection models have been used to describe the spatial-temporal dynamics of stream population and they provide some qualitative explanations to the paradox. Here random undirected movement of individuals in the environment is described by passive diffusion, and an advective term is used to describe the directed movement in a river caused by the flow. In this work, the effect of spatially varying Allee effect growth rate on the dynamics of reaction-diffusion-advection models for the stream population is studied. The dynamics of a reaction-diffusion-advection benthic-drift population model that links changes in the flow regime and habitat availability with population dynamics is studied. In the model, the stream is divided into drift zone and benthic zone, and the population is divided into two interacting compartments, individuals residing in the benthic zone and individuals dispersing in the drift zone. The benthic population growth is assumed to be of strong Allee effect type. The influence of flow speed and individual transfer rates between zones on the population persistence and extinction is considered, and the criteria of population persistence or extinction are formulated and proved. All results are proved rigorously using the theory of partial differential equation, dynamical systems. Various mathematical tools such as bifurcation methods, variational methods, and monotone methods are applied to show the existence of multiple steady state solutions of models. |
参考文献总数: | 86 |
作者简介: | 王妍,女,汉族,1988年出生。2011年毕业于哈尔滨工业大学(威海)信息与计算科学专业,获得理学学士学位。2013年毕业于哈尔滨工业大学计算数学专业获得理学硕士学位。2014年至2019年间获得国家留学基金委的资助,在威廉玛丽学院应用数学专业获得博士学位,博士导师史峻平教授。毕业后进入北京师范大学数学与科学学院博士后流动站工作至今。 一直从事微分方程与动力系统相关问题的研究,主要工作围绕具对流环境的反应扩散方程(组)展开。主要成果发表在应用数学顶级期刊SIAM J. Appl. Math., 微分方程顶级期刊J. Differential Equations和生物数学顶级期刊J. Math. Biol.等期刊上,其中一篇论文被SIAM J. Appl. Math.评为“featured article”,并在期刊封面给以介绍。部分工作受到了楼元(千人)等国内外知名学者的引用。博士后期间主持国家自然科学基金青年基金1项和第 66 批中国博士后科学基金面上资助1项。担任2018年5月中弗罗里达大学举办会议《数学生物学的前沿: 建模、计算和分析》的分会场主席(Session Chair)。 |
馆藏地: | 图书馆学位论文阅览区(主馆南区三层BC区) |
馆藏号: | 博070104/22003 |
开放日期: | 2023-02-23 |