中文题名: | 铑钯催化的 C−H 键氧化官能团化的理论研究 |
姓名: | |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 070304 |
学科专业: | |
学生类型: | 博士 |
学位: | 理学博士 |
学位类型: | |
学位年度: | 2024 |
校区: | |
学院: | |
研究方向: | 过渡金属催化反应机理 |
第一导师姓名: | |
第一导师单位: | |
提交日期: | 2024-06-12 |
答辩日期: | 2024-05-27 |
外文题名: | Theoretical Study of Rhodium and Palladium-Catalyzed C−H Oxidative Functionalization |
中文关键词: | 密度泛函理论 ; C−H 活化 ; Rh/Cu 协同催化 ; Pd/BQ 协同氧化 ; Ag 氧 化 ; TDG ; 三价 Pd ; 多功能配体协同 |
外文关键词: | Density Functional Theory ; C−H Activation ; Rh/Cu Cooperative Catalyzed ; Pd/BQ Cooperative Oxidation ; Silver Oxidation ; Transient Directing Group(TDG) ; Trivalent Palladium ; Multifunctional Ligand Cooperation |
中文摘要: |
C−H 活化在有机合成化学中具有重要意义,提供构建碳-碳键和碳-杂原子键 化合物的新策略,并具有较高的原子经济性和步骤简化性;而 C−H 氧化官能团 化可以引入各种所需基团,为后续的合成转化提供多种可行性。过渡金属催化剂 具有优异的选择性及催化活性。本论文使用密度泛函理论方法系统地研究了 Rh、 Pd 催化氧化的 C−H 氧化官能团化反应,对各反应中的催化循环机制、氧化机理、 配体作用、氧化剂协同机制做了详细展开探讨。 本论文主要研究了三个方面的工作: 一、Rh/Cu 协同催化氧化的苯甲酰胺与 1,3-二烯反应的机理研究。 这部分内容在第三章报道,主要解释了 Rh/Cu 协同催化苯甲酰胺与 1,3-二 烯的 C−H 烯丙基化反应的机理。可能的催化循环包括 C−H 活化、二烯插入和 构型转变、烯反应、催化剂回收和产物分离,即 RhIII/RhIV/RhIII 催化循环。计算 证实,Cp*Rh(OAc)(Cl)和 Cu(OAc)2(DMA)之间的络合物构成了反应过程中的活 性催化剂,我们标记其为催化剂 CAT-A,这个催化剂可以催化两个反应物的偶 联产生 Rh(3η-烯丙基) 中间体;离去的[Cu(OAc)2(DMA)(Cl)]-阴离子可以重新进 入 Rh(3η-烯丙基) 中间体的 Rh 配体场,提供一个 CH3COO 和一个 Cl 给 Rh 配体 场,从而导致产物的前体和催化剂前体的分离;产生的产物前体可以与 Cu(OAc)2(DMA) 分子反应,从而将取代的 1,3 二烯的末端甲基中夺取一个氢原 子,然后发生烯反应以形成丁二烯;而另一分子 Cu(OAc)2(DMA)分子可实现催 化剂的再生。本文也研究了取代基效应和氘代实验,所得结果也很好地解释了实 验现象 二、HBA 配体协助的 Pd 催化的 C(sp3)-H 芳基化反应机理。 在第四章中我们报道了对这个反应机理的研究,发现反应经历了由多功能配 体引导的 C−H 活化、氧化、第二底物的 C−C 偶联及脱碘过程。揭示了两种不同 的主反应催化循环机制 Pd(II)-Pd(IV)-Pd(II)和 Pd(II)-Pd(III) -Pd(II)氧化后偶联过 程。由银盐催化氧化引导 Pd(II)-Pd(III)-Pd(II)机理为优势机理。银盐氧化激活的 Pd(III)协同偶联过程为 Pd(III)中间体中的 Pd−C 键均裂得到含 C 自由基的缺配位 Pd(II) 的关键中间体 IM8,再与碘苯配位后 Pd(II)与 C 自由基分别与碘苯上的碘 原子和苯基协同偶联得到含Pd−I键的Pd(III)中间体IM9。但在随后脱碘过程中, 虽然一价的醋酸银可以完成脱碘,但被还原的单质银簇和物表现出更高的脱碘活 性。 三、立体选择性的 TDG 协助 Pd 催化的 C−H 官能团化反应机理。 在第五章中揭示在 TDG(Transient Directing Group)引导钯催化反应中的立 体选择性传导机制。该反应经历了 TDG 与底物的缩合、Pd(OAc)2 的配位、C−H 活化、烯烃插入、及氧化烯化及催化剂的再生过程,其中 C−H 活化过程为低能 垒的可逆过程,而氧化烯化过程为反应决速过程。这项研究为我们对 TDG 基团 钯催化反应的立体选择性提供了重要的见解。 最后对上述工作进行了总结及对该领域待解决的的问题和可以继续研究拓 展的方向做了简要展望。 |
外文摘要: |
C-H activation has important significance in organic synthetic chemistry, providing new strategies for constructing carbon-carbon and carbon-heteroatom bond compounds, and it has higher atom economy and step simplification. C-H oxidation functionalization can introduce various desired functional groups, providing multiple feasibility for subsequent synthetic transformations. Transition metal catalysts have excellent selectivity and catalytic activity. In this thesis, the density functional theory method was used to systematically study the Rh and Pd-catalyzed C-H oxidation functionalization reactions, and detailed discussions were made on the catalytic cycle mechanism, oxidation mechanism, ligand effect, and oxidant cooperative mechanism in each reaction. This thesis focuses on three aspects of research. 1. Mechanism study of Rh/Cu-catalyzed oxidation of benzamides with 1,3-dienes. This part is reported in Chapter 3, mainly explaining the mechanism of Rh/Cucatalyzed C-H vinylation reaction of benzamides with 1,3-dienes. Possible catalytic cycles include C-H activation, diene insertion and conformational conversion, vinylation reaction, catalyst recovery, and product separation, namely RhIII/RhIV/RhIII catalytic cycle. Calculations confirmed that the complex formed between Cp*Rh(OAc)(Cl) and Cu(OAc)2(DMA) is the active catalyst in the reaction process, and we labeled it as catalyst CAT-A. This catalyst can catalyze the coupling of two reactants to generate Rh(3η-allyl) intermediates. The departing [Cu(OAc)2(DMA)(Cl)]- anion can reenter the Rh ligand field of the Rh(3η-allyl) intermediate, providing an CH3COO and a Cl to the Rh ligand field, resulting in the separation of the precursor of the product and the precursor of the catalyst. The generated precursor of the product can react with the Cu(OAc)2(DMA) molecule to abstract a hydrogen atom from the methyl end of the substituted 1,3-diene, followed by ene reaction to form butadiene. Another molecule of Cu(OAc)2(DMA) can regenerate the catalyst. This thesis also studied the substituent effect and deuterium substitution experiment, and the obtained results also explained the experimental phenomena well. 2. Mechanism of Pd-catalyzed C(sp3 )-H arylation assisted by HBA ligand. In Chapter 4, we report the study of the mechanism of this reaction, and it was found that the reaction undergoes C-H activation, oxidation, C-C coupling of the second substrate, and dehalogenation process guided by multifunctional ligands. Two different main reaction catalytic cycles, Pd(II)-Pd(IV)-Pd(II) and Pd(II)-Pd(III)-Pd(II), were revealed after oxidation. The Pd(II)-Pd(III)-Pd(II) mechanism guided by silver salt oxidation is the dominant mechanism. The Pd(III)-coordinated coupling process activated by silver salt oxidation exhibits higher dehalogenation activity, although monovalent silver acetate can complete dehalogenation. 3. Mechanism of stereoselective TDG-assisted Pd-catalyzed C-H functionalization reaction. Chapter 5 reveals the stereoselective conduction mechanism in the Pd-catalyzed reaction guided by TDG (Transient Directing Group). The reaction undergoes TDG conjoining with the substrate, Pd(OAc)2 coordination, C-H activation, alkene insertion, oxidative olefination, and catalyst regeneration. The C-H activation process is a reversible process with a low energy barrier, while the oxidative olefination process is the rate-determining step of the reaction. This study provides important insights into the stereoselectivity of TDG-group Pd-catalyzed reactions. Finally, a summary of the above work is provided, and a brief outlook on the unresolved issues and possible research directions in this field is given.
|
参考文献总数: | 195 |
馆藏地: | 图书馆学位论文阅览区(主馆南区三层BC区) |
馆藏号: | 博070304/24013 |
开放日期: | 2025-06-12 |