中文题名: | 纳米电磁边界条件及其光场调控研究 |
姓名: | |
保密级别: | 公开 |
论文语种: | 中文 |
学科代码: | 070201 |
学科专业: | |
学生类型: | 学士 |
学位: | 理学学士 |
学位年度: | 2022 |
学校: | 北京师范大学 |
校区: | |
学院: | |
第一导师姓名: | |
第一导师单位: | |
提交日期: | 2022-05-27 |
答辩日期: | 2022-05-13 |
外文题名: | Nanoscale electromagnetic boundary conditions and its applications for light field regulation |
中文关键词: | |
外文关键词: | interface response functions ; nanoscale electromagnetic boundary conditions ; Brewster angle ; localize surface plasma ; interface induced dipole |
中文摘要: |
电磁边界条件是描述电磁行为的基本条件,在电磁学、光学、凝聚态等物理分支具有重要的地位。传统的电磁边界条件是基于突变的平直界面模型推得的。该突变界面模型忽略了界面上电子的本征尺寸以及界面附近电磁场量的变化,导致其无法解释表面电子溢出与激发、布儒斯特角附近的光场散射等现象;而且平直界面模型被直接用来研究纳米金属球的散射问题,忽略了界面曲率对电磁边界条件的影响,使得难以精准预测纳米等离激元的吸收峰的频移等信息。为了更好地研究这些纳米界面诱导的光学现象,很有必要构建纳米电磁边界条件,发展纳米电磁理论。本论文理论构建了无限大平直表面和纳米微曲表面(曲率半径 1-10 nm)的纳米电磁边界条件,通过界面响应函数描述电磁场量在界面上的过渡,探索由界面响应函数诱导的新奇光学现象。 针对无限大平直表面,本论文基于积分麦克斯韦方程组,用界面响应函数表示界面上的场不均匀性,导出了广义纳米电磁边界条件。在此基础上,构建了等效界面偶极矩模型和等效极化(磁化)电荷、电流模型,给出了相应的边界条件。然后,基于纳米电磁边界条件推得含界面响应函数的菲涅尔公式,发现界面响应函数对布儒斯特角位置及其反射系数具有明显的调控作用,观察到界面响应函数诱导的非消光、相位连续变化和可调控的古斯-汉欣位移等现象;在全反射和金属强反射情况下,观察到了由界面响应函数虚部诱导的额外吸收或增益现象。这些由界面诱导的奇特光学现象不仅丰富了界面调控光子行为的物理内涵,也为界面响应函数的测量方案的设计提供了新思路。 在无限大平直表面研究的基础上,本论文进一步考虑局域坐标系的旋转对电磁场的影响,构建了含过渡层的纳米微曲面模型,推得了适用于微纳曲面的纳米电磁边界条件。基于该边界条件给出了金属纳米球的吸收系数的表达式,得到界面响应函数调控的吸收光谱。随金属球半径减小,局域等离激元的共振频率发生红移还是蓝移现象与界面响应函数有关,为实验上展示的纳米等离激元吸收峰频移的不确定性提供了一种可能的解释。研究结果为在纳米尺度上精准调控光场提供了必要的理论基础。 |
外文摘要: |
Electromagnetic boundary conditions (EMBCs) are theoretical fundamentals to describe electromagnetic behavior in electromagnetism, optics, condensed matter and other physical branches. Traditional EMBCs were derived based on the abrupt flat interface model. The abrupt interface model ignores intrinsic sizes of electrons and transition of the electromagnetic field across the interface, which makes it unable to explain spill-out effects and photoexcitation of interface electrons and scattering of light near Brewster angle. Moreover, the flat interface model is directly used to study the scattering of nanoscale metal spheres, ignoring the influence of interface curvature on electromagnetic boundary conditions, which makes it difficult to accurately predict the frequency shift of the absorption peak of nanoscale plasma. In order to better study the optical phenomena induced by these nanoscale interfaces, it is necessary to construct nanoscale EMBCs and develop nanoscale electromagnetic theory. In this thesis, the nanoscale EMBCs are constructed for both the infinite plane and nanoscale curved surfaces. Transition of electromagnetic field on the interfaces is described by the four interface response functions (IRFs) and IRF-tailored novel optical phenomena are further explored. On macroscopic plane surfaces, generalized nanoscale EMBCs are derived with IRFs representing the field inhomogeneity across the interface based on integral Maxwell’s equations. On this basis, the equivalent interface dipole moment model and the equivalent polarization (magnetization) charge and current model are constructed, and the corresponding boundary conditions are given. Then, based on the nanoscale EMBCs, the Fresnel formulas containing IRFs are derived. It is found that IRFs have an obvious regulation effect on the Brewster angular position and its reflection coefficient. The phenomena of non-extinction, continuous phase change and adjustable Goos-Ha?nchen shift induced by IRFs are observed. In the case of total reflection and metal strong reflection, additional absorption or enhancement effects induced by the imaginary part of IRFs are observed. These unique optical phenomena induced by the interface not only enrich the physical connotation of interface-regulated photon behavior, but also provide a new idea for the measurement of IRFs. Based on the study of macroscopic plane surfaces,the influence of the rotation of local coordinate system on electromagnetic field is further considered. Nanoscale EMBCs suitable for nanoscale curved surfaces are deduced based on the surface model with transition layers. Based on these EMBCs, the absorption coefficient of nanoscale metal spheres is given, and the absorption spectrum regulated by IRFs is obtained. With the decrease of the radius of the metal sphere, the phenomenon of red shift or blue shift of the resonance frequency of the localized surface plasma (LSP) is related to IRFs, which provides a possible explanation for the uncertainty of the absorption peak frequency shift of LSP shown in previous experiments. The results provide a necessary theoretical basis for accurately regulating the light field on the nanoscale. |
参考文献总数: | 42 |
优秀论文: | |
插图总数: | 10 |
插表总数: | 0 |
馆藏号: | 本070201/22150 |
开放日期: | 2023-05-27 |