中文题名: | 网络数据预测变量单指标模型的统计分析与应用 |
姓名: | |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 071201 |
学科专业: | |
学生类型: | 学士 |
学位: | 理学学士 |
学位年度: | 2023 |
校区: | |
学院: | |
第一导师姓名: | |
第一导师单位: | |
提交日期: | 2023-06-09 |
答辩日期: | 2023-05-05 |
外文题名: | STATISTICAL ANALYSIS OF A SINGLE-INDEXMODEL USING NETWORK DATA AS PREDICTIVE VARIABLES |
中文关键词: | |
外文关键词: | Single-index model ; Node ; Network data ; Sparsity ; Synergistic effect |
中文摘要: |
网络数据是一种新兴的非结构化数据,在互联网、金融、生物等行业受到极大关注。网络数据作为高维数据的一种形式,可对其建立单指标模型,运用于回归分析之中,以深入挖掘网络数据背后的逻辑,具有重要的理论意义和应用价值。单指标模型是对高维数据建模的常用手段,被广泛应用于生物医学、数量金融等研究背景中,能够在保留模型可解释性的条件下增添更多的灵活性,并避免“维度灾祸”问题。 |
外文摘要: |
Network data is an emerging kind of unstructured data, which has received great attention in internet, finance, biology and other industries. As a form of high-dimensional data, network data can be modeled as a single-index model and applied in regression analysis to deeply explore the logic behind network data, which has important theoretical significance and application value. Single-index models are a common tool for modeling high-dimensional data, and are widely used in biomedical, quantitative and financial research contexts to add more flexibility while retaining model interpretability and avoiding the "dimensional disaster" problem. |
参考文献总数: | 36 |
馆藏号: | 本071201/23026 |
开放日期: | 2024-06-08 |