- 无标题文档
查看论文信息

中文题名:

 我国典型城市空气质量智能预测与分析    

姓名:

 黄川    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 070504    

学科专业:

 地理信息科学    

学生类型:

 学士    

学位:

 理学学士    

学位年度:

 2024    

校区:

 珠海校区培养    

学院:

 知行书院    

第一导师姓名:

 赵文智    

第一导师单位:

 地理科学学部    

提交日期:

 2024-05-28    

答辩日期:

 2024-05-13    

外文题名:

 Intelligent Prediction and Analysis of Air Quality in Typical Chinese Cities Using Deep Learning Models    

中文关键词:

 PM2.5浓度 ; 深度学习 ; 循环神经网络 ; 长短期记忆网络 ; 门控循环单元 ; 模型评估    

外文关键词:

 PM2.5 Concentration ; Deep Learning ; RNN ; LSTM ; GRU ; model evaluation    

中文摘要:

本文针对北京、上海、广州、武汉四个典型城市的PM2.5浓度数据,构建了基于RNN循环神经网络、LSTM长短期记忆网络和GRU门控循环单元三种深度学习模型的空气质量预测系统。通过对比分析不同模型在各城市数据集上的预测性能,探究了深度学习技术在PM2.5浓度预测中的应用效果。研究发现,引入门控机制的LSTM和GRU模型能够有效捕捉PM2.5时间序列中的长期依赖关系,在预测精度和稳定性方面优于传统的RNN模型。其中,GRU模型在多个数据集的性能最佳,在预测精度、训练效率和模型稳定性方面达到了较好的平衡。消融实验揭示了隐藏层神经元数量和学习率等关键参数对模型性能的影响规律。另外,不同城市PM2.5数据的特性差异,导致模型在不同数据集上的表现有所不同,需要针对性地调整模型设计。本研究探索了不同深度学习模型在我国典型城市上的预测效果,为未来进一步完善预测模型和拓展应用场景和环境管理和决策提供有力支持。

外文摘要:

This study introduces an advanced air quality forecasting system powered by three cutting-edge deep learning architectures: Recurrent Neural Networks (RNNs), Long Short-Term Memory (LSTM) networks, and Gated Recurrent Units (GRUs). The system is rigorously trained and validated using PM2.5 concentration data collected from four prominent Chinese cities: Beijing, Shanghai, Guangzhou, and Wuhan. By conducting an in-depth comparative analysis of the predictive performance of these models across diverse urban datasets, this research endeavors to shed light on the efficacy of deep learning techniques in anticipating PM2.5 concentrations. The findings underscore the superior capabilities of LSTM and GRU models, which leverage gating mechanisms to effectively capture long-term dependencies in PM2.5 time series, resulting in enhanced prediction accuracy and robustness compared to conventional RNN models. Among the three architectures, GRU emerges as the frontrunner, exhibiting the most favorable balance between prediction precision, training efficiency, and model stability across multiple datasets. Ablation experiments further elucidate the influence of critical parameters, such as the number of hidden layer neurons and learning rate, on model performance. Notably, the study underscores the inherent heterogeneity in PM2.5 data characteristics across cities, necessitating city-specific fine-tuning of model architectures. This research offers valuable insights into the application of deep learning models for air quality forecasting in major Chinese cities, providing a solid foundation for the refinement of prediction models and the expansion of their application domains in environmental management and policy-making.

参考文献总数:

 26    

馆藏号:

 本070504/24012Z    

开放日期:

 2025-05-28    

无标题文档

   建议浏览器: 谷歌 360请用极速模式,双核浏览器请用极速模式