- 无标题文档
查看论文信息

中文题名:

 基于集成学习的股票最大涨跌幅预测及股票选择    

姓名:

 陶雪然    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 071201    

学科专业:

 统计学    

学生类型:

 学士    

学位:

 理学学士    

学位年度:

 2024    

校区:

 北京校区培养    

学院:

 统计学院    

第一导师姓名:

 李高荣    

第一导师单位:

 统计学院    

提交日期:

 2024-05-20    

答辩日期:

 2024-05-07    

外文题名:

 Prediction of Stock's Maximum Rise and Fall and Stock Selection Based on Ensemble Learning    

中文关键词:

 股票市场预测 ; 中长期预测 ; 涨跌幅 ; 集成学习    

外文关键词:

 Stock market forecasting ; Long-term prediction ; Maximum price fluctuation ; Ensemble learning    

中文摘要:

在金融市场研究中,股票市场的预测一直是投资者和研究者关注的重点。然而,由于股票市场的复杂性和非线性特征,预测工作极具挑战性。
本研究创新性地提出了一种预测思路,选取中长期股票最大涨跌幅作为关键预测指标,以追求更优的投资策略。首先,本文构建了针对涨跌幅预测问题的多维特征的指标体系,以全面捕捉股票市场的不同时间频度特征。在此基础上,综合运用支持向量回归、随机森林和XGBoost算法,构建高效的集成模型,实现对股票市场中长期最大涨跌幅的精准预测。通过对比实验验证,发现该模型在预测中有较好的表现。此外,本研究还结合季节最大涨跌幅和季节平均涨跌幅的预测指标,提出创新的选股策略,为投资者提供科学决策依据。
综上所述,本研究成功实现对股票市场中长期最大涨跌幅的精准预测,并提出创新的选股策略,为投资者提供有力支持,丰富了股票预测理论体系。

外文摘要:

In financial market research, stock market forecasting has been a primary focus for investors and researchers. However, due to the complexity and nonlinear nature of the stock market, forecasting remains a challenging task. 
This study introduces a novel forecasting approach by selecting the maximum stock rise and fall in the medium and long term as a crucial forecasting indicator. This approach aims to facilitate a more robust investment strategy. Firstly, this paper establishes a comprehensive indicator system with multi-dimensional features tailored for the forecasting of stock fluctuations. This is done to capture the diverse time-frequency characteristics of the stock market comprehensively. Subsequently, we integrate Support Vector Regression, Random Forest, and XGBoost algorithms to develop an efficient integrated model. This model aims to accurately predict the maximum upward and downward movements of the stock market in the medium and long term. The model underwent comparative experimental validation, revealing its superiority in prediction accuracy compared to existing approaches. Furthermore, the study incorporates seasonal maximum and seasonal average prediction indicators to propose innovative stock selection strategies, thereby providing investors with a scientific basis for decision-making.
In conclusion, the study successfully achieves accurate prediction of the maximum rise and fall of the stock market in the medium and long term, while introducing innovative stock selection strategies. This provides investors with valuable support and enhances the theoretical framework of stock prediction.

参考文献总数:

 23    

插图总数:

 4    

插表总数:

 11    

馆藏号:

 本071201/24008    

开放日期:

 2025-05-20    

无标题文档

   建议浏览器: 谷歌 360请用极速模式,双核浏览器请用极速模式