- 无标题文档
查看论文信息

中文题名:

 铜催化C-H键活化酯化反应及钯催化C-H键活化碳胺化反应的机理研究    

姓名:

 岑杨    

保密级别:

 公开    

论文语种:

 中文    

学科代码:

 070304    

学科专业:

 物理化学(含化学物理)    

学生类型:

 硕士    

学位:

 理学硕士    

学位类型:

 学术学位    

学位年度:

 2019    

校区:

 北京校区培养    

学院:

 化学学院    

研究方向:

 C-H键活化    

第一导师姓名:

 方德彩    

第一导师单位:

 北京师范大学化学学院    

提交日期:

 2019-06-11    

答辩日期:

 2019-06-10    

外文题名:

 THEORETICAL STUDIES ON THE MECHANISM OF COPPER CATALYZED ESTERIFICATION AND PALLADIUM CATALYZED CARBOAMINATION VIA C-H BOND ACTIVATION    

中文关键词:

 C-H键活化 ; Cu(I)催化 ; Pd(II)催化 ; 反应机理 ; 密度泛函理论    

中文摘要:
过渡金属催化反应改变了有机化学的方法和理念,极大地扩展了化学家们科研生产的手段和思路。其中铜和钯作为金属催化剂已经得到了大量的运用,在金属催化剂中也占据着主要席位。近些年,C-H键活化官能化越来越受到有机化学工作者的重视,利用过渡金属催化剂可以直接将不活泼的C-H键快捷地转化成多种化学键,提高了原子经济性。因此,从计算化学的角度研究催化机理从而深入地了解这一类反应,具有深刻的现实意义。文章分别选取了Cu(I)催化不活泼烷烃和苯甲酸在过氧化叔丁基作用下生成苯甲酸烯丙基型酯的反应和Pd(II)催化的以NFBS为氧化剂的烯烃分子内催化氧化加成反应进行研究。 对Cu催化体系,我们的研究工作在B3LYP+IDSCRF/6-31G(d )水平上进行。计算结果表明Cu配合物催化反应的机理为一个自由基机理。按照以下几个步骤进行:1、(BPI)Cu催化剂(1-Cu)与过氧化叔丁基作用,使过氧化叔丁基裂解并产生自由基(tBuO);2、在1-Cu的协助下,tBuO与底物不活泼烷烃作用,进行C-H键活化过程,其中环己烷自由基的C-H键活化步骤为反应的决速步,其自由能能垒为28.3Kcal/mol;3、催化剂分子从结构中脱离复原,获得目标酯类产物。利用该机理对环戊烷至环辛烷的的C-H键活化反应路径进行对比,其决速步能垒与实际产率相吻合。对CuCl催化反应的计算结果显示,Cu盐与Cu配合物催化反应的机理不一致。 对于Pd催化体系,其研究工作在B3LYP+IDSCRF/DGDZVP水平上进行。计算结果显示Pd催化反应机理是一个非自由基协同机理。其反应按照以下几个步骤进行:1、在Pd(TFA)2催化剂作用下,底物分子(INT-1)形成五元环结构,并脱去亚氨基上的H原子,其中包括了反应的决速步,其自由能能垒为16.4Kcal/mol;2、Pd催化剂被NFBS氧化至高价态;3、溶剂甲苯分子在高价态的Pd催化剂作用下,完成C-H键活化过程,其自由能能垒为16.0Kcal/mol;4、形成目标产物并与Pd催化剂脱离。对于这类反应,一般的过程是催化剂先与甲苯分子结合,完成H迁移过程后,再由氧化剂氧化。而该机理的不同之处在于,NFBS的氧化过程被提前了,这使得Pd的价态是先升高再降低经过的是Pd(II)/(IV)/(II)机理,而不是Pd(II)/(0)/(II)机理。 这些实验结果有助于更深入地验证和了解C-H键活化反应的机理,并为类似反应的科研生产工作提供参考。
外文摘要:
Reactions catalyzed by transition metals have changed the methods and conceptions of organic chemistry and profoundly expanded the means and orientations of scientific research and production for chemical workers.Among transition metal, Copper and palladium have been widely used as metal catalysts and occupy dominant positions in metal catalysts. In recentyears, the C-H bond activation functionalization has attracted more attention of organic chemists. Transition metal catalysts can directly convert inactive C-H bonds into a variety of chemical bonds and increase atomic economy. Therefore, it is of tremendous practical significance to study the catalytic mechanism from the perspective of computational chemistry and get further understanding of this kind of reaction.Thus, Copper (I) catalyzed the acitivation of C-H bonds from inactive alkanes reacting with benzoic acid under the action of tert-butyl peroxide forming allyl benzoate, and Pd (II) catalyzed the intramolecular oxidation of olefins with NFBS as oxidant in toluene solvent were selected to study. The work was researched by employing B3LYP-IDSCRF/6-31G (d) for Cu catalytic system. The computational results show that the mechanism of the reaction catalyzed by copper complex is a free radical mechanism, following these steps: 1. The catalyst (BPI)Cu(1-Cu) reacts with tert-butyl peroxide to crack tert-butyl peroxide and produce free radicals (tBuO); 2. Under the assistance of 1-Cu, the C-H bond activation take place whentBuO reacts with inactive alkanes , where the C-H bond activation of cyclohexane radical is the rate-limiting step of the reaction, and its free energy barrier is 28.3Kcal/mol;3. The catalyst molecule is separated from the structure and the target ester products are retrieved.The reaction paths of C-H bond activations from cyclopentane to cyclooctane was compared by this mechanism, and the energy barriers of the rate-limiting stepsare consistent with the actual yields. The computational results of CuCl catalyzed reaction show that the mechanism catalyzed by copper salt is not similar to that catalyzed by copper complex. And the work was researched by employing B3LYP-IDSCRF/DGDZVP for Pd catalytic system. The results show that the mechanism of Pd catalyzed reaction is a non-radical synergistic mechanism. The reaction follows these steps: 1. Under the action of Pd (TFA)2 catalyst, the substrate molecule (INT-1) forms a five-membered ring structure, and the hydrogen atom is removed from imino functional group, where the rate-limiting step of the reaction is included,andits free energy barrier is 16.4Kcal/mol; 2. Pd catalyst is oxidized to a high valence state by NFBS; 3. Toluene the solvent molecule reacts the C-H bond activation via high valence Pd catalyst, which free energy barrier is 16.0Kcal/mol;4. The target product is generated and separates from Pd catalyst, and the Pd catalyst take place the reduction and is restored finally. Generally, the catalyst combines with the toluene molecule in this kind of reactions firstly, then reacts the hydrogen migration process, and finally is oxidized by oxidant. The mechanism of this work is different that the oxidation process of NFBS is advanced, which makes the valence state of palladium increase first and then decrease, through the Pd(II)/(IV)/(II) mechanism, rather than the Pd(II)/(0)/(II) mechanism. These experimental results are helpful to verify and understand the mechanism of C-H bond activation reaction further, and provide reference for scientific research and production to similar reactions.
参考文献总数:

 0    

馆藏号:

 硕070304/19016    

开放日期:

 2020-07-09    

无标题文档

   建议浏览器: 谷歌 360请用极速模式,双核浏览器请用极速模式