中文题名: | 一类平面分段光滑四次微分系统的极限环个数上界估计 |
姓名: | |
保密级别: | 公开 |
论文语种: | 中文 |
学科代码: | 070101 |
学科专业: | |
学生类型: | 学士 |
学位: | 理学学士 |
学位年度: | 2022 |
学校: | 北京师范大学 |
校区: | |
学院: | |
第一导师姓名: | |
第一导师单位: | |
提交日期: | 2022-05-24 |
答辩日期: | 2022-05-12 |
外文题名: | The Estimate of the Upper Bounds for the Number of Limit Cycles Appearing from the Perturbation of a Differential System with a Segmented Quadratic Polynomial |
中文关键词: | 极限环 ; Poincaré分支 ; 平均法 |
外文关键词: | |
中文摘要: |
本文借由一阶平均理论,就微分系统{█(■8(x ?=y(x^3+ax^2+bx+c)+εP^+ (x,y)@y ?=-x(x^3+ax^2+bx+c)+εQ^+ (x,y) ),x≥0@■8(x ?=y(x^3+ax^2+bx+c)+εP^- (x,y)@y ?=-x(x^3+ax^2+bx+c)+εQ^- (x,y) ),x<0)┤其中c≠0且4a^3 c-a^2 b^2+4b^3-18abc+27c^2≤0,P^+ (x,y),P^- (x,y),Q^+ (x,y),Q^- (x,y)∈R[x,y],且deg(P^+ (x,y))=deg(P^- (x,y))=deg(Q^+ (x,y))=deg(Q^- (x,y))=4,P^+ (x,y)≠P^- (x,y), Q^+ (x,y)≠Q^- (x,y),0<ε?1.在 Poincaré分支意义下的极限环个数上界展开了研究。通过计算不同情形下平均函数的生成函数,验证其在参数特定时的线性无关性,得出当4a^3 c-a^2 b^2+4b^3-18abc+27c^2<0,4a^3 c-a^2 b^2+4b^3-18abc+27c^2=0且a≠3√(3&c)和4a^3 c-a^2 b^2+4b^3-18abc+27c^2 |
外文摘要: |
According to the first order averaging theory, the paper studied the upper bounds for the number of limit cycles bifurcating by Poincaré of a segmented Quadratic Polynomial differential system {█(■8(x ?=y(x^3+ax^2+bx+c)+εP^+ (x,y)@y ?=-x(x^3+ax^2+bx+c)+εQ^+ (x,y) ),x≥0@■8(x ?=y(x^3+ax^2+bx+c)+εP^- (x,y)@y ?=-x(x^3+ax^2+bx+c)+εQ^- (x,y) ),x<0)┤ With c≠0,4a^3 c-a^2 b^2+4b^3-18abc+27c^2≤0, P^+ (x,y),P^- (x,y),Q^+ (x,y),Q^- (x,y)∈R[x,y], deg(P^+ (x,y))=deg(P^- (x,y))=deg(Q^+ (x,y))=deg(Q^- (x,y))=4, P^+ (x,y)≠P^- (x,y), Q^+ (x,y)≠Q^- (x,y), 0<ε?1. By calculating origin functions of averaging functions with different conditions, demonstrating their linear independence based on specific parameters, the upper bounds for the number of positive simple zero points for the averaging functions, also the upper bounds for the number of limit cycles bifurcating by Poincaré of the system has been estimated. When 4a^3 c-a^2 b^2+4b^3-18abc+27c^2<0, 4a^3 c-a^2 b^2+4b^3-18abc+27c^2=0 and a≠3√(3&c), 4a^3 c-a^2 b^2+4b^3-18abc+27c^2 |
参考文献总数: | 17 |
插图总数: | 1 |
插表总数: | 9 |
馆藏号: | 本070101/22110 |
开放日期: | 2023-05-24 |