中文题名: | 钙钛矿微纳晶体的构筑及其光电性能研究 |
姓名: | |
保密级别: | 公开 |
论文语种: | 中文 |
学科代码: | 070301 |
学科专业: | |
学生类型: | 硕士 |
学位: | 理学硕士 |
学位类型: | |
学位年度: | 2022 |
校区: | |
学院: | |
研究方向: | 钙钛矿光电器件 |
第一导师姓名: | |
第一导师单位: | |
提交日期: | 2022-06-07 |
答辩日期: | 2022-06-07 |
外文题名: | PREPARATION AND OPTOELECTRONIC PERFORMANCE OF PEROVSKITE MICRO-NANO CRYSTALS |
中文关键词: | |
外文关键词: | Nanophotonics ; Two-dimensional perovskites ; Lead-free metal halides ; Metal ion doping ; Photodetectors ; Micro/nanolasers |
中文摘要: |
纳米光子学器件是集成光电回路中必不可少的组成部分,在现代信息社会扮演着越来越重要的角色。随着科学技术的不断发展,实际应用对于这些光电器件的性能提出了更高的要求。微纳激光器是一类重要的光子学元件,主要用于相干光源的产生。光电探测器是纳米光子学与传统光电子学相结合的产物,主要用于光信号的检测,并将其转化为电信号输出,是连接光与电的桥梁。构筑具有优异性能的微纳激光器和光电探测器有助于推动它们在光电集成回路中的发展和应用,具有重要意义。钙钛矿材料由于具有优异的光学性质和易加工处理的特点,近年来被广泛地应用于光电器件的制备中。但是,基于钙钛矿材料的光电器件要想投入实际应用,仍然存在许多严峻的问题亟待解决。 基于以上认识,本文以制备具有特定功能的光电器件为导向,深入分析目前钙钛矿光电器件中存在的问题,寻找合适的方法、设计合理的结构,以解决这些问题,从而促进其进一步发展和实际应用。主要成果总结如下: 1、光电探测器在图像传感和光电通信等领域发挥着重要的作用。尽管钙钛矿光电探测器具有优异的光电性能,但是其不稳定性一直以来限制了这些器件的实际应用。通过引入有机配体形成的二维钙钛矿已被证明具有更高的稳定性,但是二维钙钛矿往往表现出较差的载流子传输能力,导致其无法实现高灵敏的光电探测。离子掺杂作为一种改性手段,已经被广泛的应用于三维钙钛矿中,以改善这些钙钛矿的光电性质。然而,二维钙钛矿的分子结构与三维钙钛矿有较大的不同,掺杂对于二维钙钛矿性能的影响仍然缺乏深入的研究。在这项工作中,我们研究了一系列铕离子掺杂的二维钙钛矿单晶阵列,通过调节铕离子的掺杂浓度,寻找最佳的掺杂比例,使二维钙钛矿光电探测器的探测能力大幅提升。在最佳掺杂比例下,该光电探测器表现出优异的响应度(6.24 A/W),出色的探测率(5.83 × 1013 Jones)以及超高的开关比(103)。这些结果为制备高性能的二维钙钛矿光电探测器提供了思路,并促进其实际应用。 2、小型化激光器是用于产生相干光源的设备,是光电集成回路的重要组成部分。钙钛矿材料由于具有直接带隙以及较高的荧光量子产率等优点,已经被应用于制备高性能的微纳激光器。然而,铅基钙钛矿的不稳定性和严重的卤素离子迁移导致这些微纳激光器缺乏热稳定性和光稳定性,无法长期使用。受到铅基卤化物钙钛矿的启发,人们开始探索代替铅元素的金属来构筑非铅金属卤化物材料。铯铜(I)卤化物同样具有直接带隙和较高的荧光量子产率,并且具有更优的稳定性,是一类颇有前景的发光材料。然而,这类卤化物目前在激光方向的应用报道仍比较少,研究不够深入。因此,本工作选取了两种发光性质较好的铯铜(I)碘化物,深入研究了它们的受激辐射行为。在光泵浦的条件下,具有深蓝色发光的铯铜(I)碘化物实现了稳定的激光出射。另外,该样品在自然环境中放置一年后,仍能够维持良好的形貌结构,并且实现稳定的深蓝色激光出射,表现出优异的长期稳定性,推动了深蓝色激光器的发展和应用。 总之,本文通过对材料的设计或改性,制备了一系列光电器件,研究了结构与性能的关系,进一步实现了这些器件性能的提高。我们期望这些工作展现出了新颖的钙钛矿纳米光子学器件的设计思路,以特定的光子学功能为导向,选择合适的材料体系,构筑基于微结构的纳米光子学器件,为制备高性能且稳定性强的纳米光子学器件提供更多的思路和途径。 |
外文摘要: |
Photonic and optoelectronic devices, which are fundamental components of on-chip integrated optoelectronic circuits, play important roles in the modern society. With the rapid development of information technology, the increasing demands call for high-performance photonic and optoelectronic devices. Miniaturized lasers, as important photonics devices, are utilized to generate coherent light sources. Photodetectors, which can convert optical signals into electrical signals, are widely applied in optoelectronic circuits, The construction of miniaturized lasers and photodetectors with excellent performances is of great importance to promote their development and application in optoelectronic circuits. Recently, perovskite materials have been widely used in the preparation of photonic and optoelectronic devices owing to their excellent optical properties and simple processability. However, the optoelectronic performances of these device are still limited and need to be further improved to meet the ever-increasing demands in practical applications. Photodetectors have extensive applications in the various fields, such as environmental monitoring, optical communication, and image sensing. Although perovskite photodetectors have shown excellent optoelectronic performances, their practical applications are still limited by the intrinsic instability. Two-dimensional perovskites with enhanced stability have emerged as promising candidates as stable photodetectors. Nevertheless, the low carrier transport efficiency originating from high trap density, hinders their further development. Here, we have demonstrated a series of photodetectors based on Europium-doped two-dimensional perovskites. By tuning the doping ratio of Europium, the carrier lifetime was prolonged, the trap density was suppressed and thus the carrier transport efficiency was great enhanced. As a result, the optimized photodetectors exhibit an excellent responsivity (6.24 A/W) and an outstanding detectivity (5.83 × 1013 Jones) and a high Ion/Ioff ratio (103). These results would provide new insights for the design and preparation of high-performance two-dimensional perovskite photodetectors and promote their practical applications. Miniaturized lasers, which can generate coherent light, are fundamental components in photonic integrated circuits. Perovskite materials are promising materials to construct miniaturized lasers thanks to their direct bandgap, high fluorescence quantum yield and tunable bandgap. However, the instability of these perovskites results in the poor stability of miniaturized lasers and thus impedes their further applications. Inspired by lead halide perovskites, researchers begin to investigate on lead-free metal halides with excellent luminescence properties for the fabrication of miniaturized lasers. Cesium copper (I) halides, which possess direct bandgaps, high fluorescence quantum yield and better stability, have emerged as promising light-emitting materials. However, there are few reports that study their photoluminescence and lasing performances. Here, two cesium copper (I) iodides with outstanding optical properties were selected to investigate on their photoluminescence properties. When pumped with 400 nm femtosecond laser, the microwires of cesium copper (I) iodide with deep-blue luminescence show stable lasing behavior. Moreover, the sample can still achieve stable lasing after one year under ambient conditions, showing great potential in practical applications. In summary, by selecting specific materials or modifying their properties, we have demonstrated a series of photonic and optoelectronic devices with excellent performance. The relationship between structure and performance is further studied. We hope that these results would provide novel perspective for the rational design and construction of photonic and optoelectronic devices. We believe that these results would help to understand the structure-property relationship in perovskites and promote the practical applications of these miniaturized devices in optoelectronic integrated circuits. |
参考文献总数: | 143 |
馆藏号: | 硕070301/22001 |
开放日期: | 2023-06-07 |