- 无标题文档
查看论文信息

中文题名:

 STEM课程产品开发技术研究    

姓名:

 李波    

保密级别:

 公开    

论文语种:

 中文    

学科代码:

 078401    

学科专业:

 教育技术学    

学生类型:

 博士    

学位:

 教育学博士    

学位类型:

 学术学位    

学位年度:

 2020    

校区:

 北京校区培养    

学院:

 教育学部    

研究方向:

 课程开发    

第一导师姓名:

 杨开城    

第一导师单位:

 北京师范大学教育学部    

提交日期:

 2020-06-26    

答辩日期:

 2020-06-26    

外文题名:

 The Research On Technology Of STEM Curriculum Products Development    

中文关键词:

 STEM教育 ; 课程开发 ; 课程开发技术 ; STEM课程产品 ; 知识组件    

外文关键词:

 STEM Education ; Curriculum Development ; Curriculum Development Technology ; STEM Curriculum Products ; Knowledge Component    

中文摘要:
随着STEM教育的不断发展,人们对优质STEM课程的需求日益迫切。通过对国内外STEM教育发展脉络的梳理和已有课程产品的分析,本研究发现目前STEM课程质量参差不齐,尤其有些课程在跨学科知识整合应用方面形式化,在目标-手段一致性方面不清晰,无法保证在教学实施过程中能够达成课程目标、落实STEM教育理念。究其根本,目前大部分STEM课程的生成仅依赖专家经验和感受,开发过程缺乏明确的操作技术和方法的支持。
课程开发是一个专业研究领域,STEM课程因跨学科整合创新、多方面能力培养需求等特点,其开发过程更被视为是一个复杂信息的处理和决策过程。而课程是落实STEM理念、培养STEM人才的关键,因此,本研究的研究目标是构建一种适用于STEM领域的技术化课程开发方法,将课程开发过程规范化、科学化,形成逻辑严谨的技术流程和数据依赖关系,在STEM课程产品的目标、学习活动、评价等方面获得清晰可溯的一致性,以期提高开发过程的理性水平和开发成果的产品化程度。
为了实现该目标,本研究确定了STEM课程产品模型研究、STEM课程开发技术流程研究、STEM知识组件设计技术研究、STEM课程优化技术研究四项研究内容,并基于国内外已有研究基础,提出了初步的“STEM课程产品开发技术原型”。
在研究确证阶段,整体上采用技术人造物缺陷分析法。首先应用技术原型开发STEM课程产品,即生成技术人造物;然后开展课程实施,将该课程产品的教学实施数据与原设计数据进行差异对比并分析归因,查找课程产品中存在的问题,进而追溯课程开发技术方法层面的解决办法,修订技术原型,形成新的技术版本。循环此过程,直至满意。
本研究开发了6门课程,完成9次课程实施,将此过程中获得的170组活动任务的课程设计和实施数据作为数据分析样本。在数据分析阶段,结合IIS图分析法和教学过程机制图分析法,分析了课程产品在目标-手段一致性、学生参与度、媒体多元性、教师自由度、STEM整合度5项指标上的表现,检验了四项研究内容中的预判和不确定问题,经过两次修正后获得了满意的STEM课程产品开发技术版本。最终成果包括:
(1)构建了STEM课程产品模型,明确了STEM课程主题、课程目标、知识建模图、知识组件、学习活动、活动任务、行为交互、资源工具、规则9个组成成分及其间的制约、包含关系。
(2)生成了STEM课程产品开发技术,确定了明确的数据依赖关系和操作流程,形成了“STEM课程主题的确定”、“STEM课程目标与内容清晰化”、“STEM知识组件设计”、“学习活动、任务和行为交互设计”以及“STEM课程优化”五个技术环节,其中重点研究了STEM知识组件设计技术和STEM课程优化技术,规划了“何以STEM”、“学习动力提升”和“模拟教学”三项优化技术,有针对性地设计了技术工具。
本研究的创新之处在于:(1)首次通过模型将STEM课程产品结构成分和相关关系清晰化,帮助STEM教育工作者更加全面直观地认识STEM课程产品全貌,理解各部分功能和应用价值;(2)首次运用教学过程机制图作为研究工具来中观地展示、分析STEM教学过程,对以往或通过表面现象笼统评判教学,或通过微观学习行为分析洞察真相的研究来说,它提供了一种新的研究视角和方法参考;(3)首次针对STEM教育领域构建了具有明确数据依赖关系和操作衔接关系的STEM课程产品开发技术,形成了符合STEM教育特征的专用课程开发方法,保证了课程开发成果的目标-手段一致性等质量指标。
综上所述,本研究源于STEM教育领域的理论和实践发展需求,最终成果实现了预期研究目标,形成了STEM课程产品开发技术。该成果在理论上扩大了课程开发领域的理论覆盖面,助力课程开发领域向技术化方向发展,从实践角度能有效帮助STEM教育领域解决课程质量问题,为促进STEM教育发展提供有力支持。

 

外文摘要:
There is a rising demand for high-qualified STEM curriculum against its continuous development in recent years. The analysis of STEM developing history and present curriculum products suggests several weaknesses: contrasting differences in STEM courses quality with some courses focuses on forms rather than contents of cross-curriculum integration, lack in clarity of STEM objective-strategy conformity insurance. These weaknesses make it difficult to realize curriculum objectives through instruction implementation. The STEM visions are still far away. To tackle these problems, a much important way is to surpass the experts’ personal experience-based curriculum developing model, find a clearly stated operational technological system for STEM curriculum developing.
Curriculum development is a professional research field and entails complex information processing and decision-making activities. STEM is a stronger one considering its characteristics of cross-subjects area integration and innovation, all-around skills fostering demands, etc. Curriculum is a key to realize STEM visions and foster STEM intelligent. In order for a clear and traceable congruence among STEM products objectives, learning activities and evaluations, the current research sets as its goal to construct a STEM technological methods system, including a logical, strict technical operations flow and data-based inter-dependent correlation among different curriculum development steps, featuring the STEM curriculum developing process with standardization and scientific nature.
Based on the above research goal, the research consists of four parts: the STEM curriculum product model research, the STEM curriculum developing operations flow research, the STEM knowledge modularization technology research, and the STEM curriculum improvement technology research. Based on current research at home and abroad, the research hypothesis is generated: to form a STEM product developing technological prototype.
To verify the research design, the research performs a technological artifacts weakness analysis method. First, it forms the technological artifact of STEM curriculum product applying the technological prototype. Then it carries out the instructional implementation with a followed data-based comparison analysis between the product design and implementation. With the problems found in curriculum product, causes in curriculum development technology are traced and resolutions are derived. The original technological prototype is modified, and a newer edition is formed. This research cycle is iterated until a satisfying state is reached.
The research gets 170 groups valid data sample involving six curriculums and nine times instructional implementation. In the period of data analysis, it uses the IIS analysis and instructional process mechanism diagram as research instruments to analyze the curriculum product’s performance level through five quality indicators, including objectives-strategy congruence, learner participation, media richness, instructor’s freedom, and STEM integration. It tests the research hypothesis and uncertainty questions involved in the four research parts consisted in the research. A satisfying edition of STEM curriculum product development technology is obtained after twice modifications. The final research productions are as follows:
(1) The research constructs a STEM curriculum product model, clearly elaborates the nine components of the model and their interrelations. The nine components are curriculum themes, objectives, knowledge module, learning activities, learning tasks, behavioral interactions, resources & tools, and rules base. The interrelations are divided into three types: containment, restrain and interdependent.
(2) The research constructs a system of STEM curriculum product development technology, clarifies its formal data dependent relations and operations flow. The developing process consists of five technological stages, they are: identify the STEM curriculum themes, clarity the STEM curriculum objectives and knowledge, analyze and model knowledge content and, design the STEM knowledge module, design learning activities, tasks and interactional behaviors, optimize STEM curriculum. The research emphasizes STEM knowledge module design and STEM curriculum optimization technology. Four optimization technology and respective technological tools are designed involving “how STEM”, “motivational power improvement”, “values objectives realization confirmation” and “rehearsal teaching”.
The research innovates in the first use of model to clarify STEM curriculum product components and their relations, helping STEM educators grasp STEM product’s functions and practical meanings more comprehensively and intuitively. The research is innovative also in its use of instructional process diagram as a research analysis instrument to present a middle-level perspective of STEM instructional process, providing a new research angle and referable method contrasting the traditional research approach with forms-based general instructional evaluations or micro-level analysis of specific learning behaviors. Finally, the research produces a data dependent, operations correlated STEM curriculum product development technology for the STEM field, identifies special curriculum development methods conforms the STEM characteristics. The objectives-instruments congruence is supported.
To be concluded, the current research roots in theoretical and practical demand in the STEM education field. Its research production fulfills the expected research goal: generates a STEM curriculum product development technology. The research enriches the curriculum development theories in the direction of technological curriculum development. From the practical perspective, the research can help the STEM education field improve product quality problems, give more support to push the development of STEM field.

 

参考文献总数:

 227    

馆藏号:

 博078401/20003    

开放日期:

 2021-06-26    

无标题文档

   建议浏览器: 谷歌 360请用极速模式,双核浏览器请用极速模式