- 无标题文档
查看论文信息

中文题名:

 QTL作图的模型选择    

姓名:

 戴梦姣    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 071201    

学科专业:

 统计学    

学生类型:

 学士    

学位:

 理学学士    

学位年度:

 2011    

学校:

 北京师范大学    

校区:

 北京校区培养    

学院:

 数学科学学院    

第一导师姓名:

 李仲来    

第一导师单位:

 数学科学学院    

提交日期:

 2011-06-30    

答辩日期:

 2011-06-01    

外文题名:

 The model selection of QTL    

中文关键词:

 QTL定位 ; 多元回归 ; 逐步回归 ; 岭回归 ; PLS ; 多重共线性    

外文关键词:

 quantitative trait locus mapping ; multivariate regression ; Stepwise regression ; ridge regression ; partial least-squares regression ; multiple altogether linear    

中文摘要:

为QTL作图的模型选择提供参考,基于标记与性状的多元回归建模,采用向前向后逐步方法对变量进行选择回归,着重于岭回归与偏最小二乘回归来解决变量间共线性问题并对BarleyDH.BIP群体进行建模分析。由于标记变量存在很强的共线性,在解决共线性问题中,仅仅对变量的选择剔除是不够,岭回归方法能建立相对较为精确的模型,但是预测不稳定,效果不够理想,偏最小二乘回归方法虽然模型建立没有岭回归精确,但是预测值与真实值最相近,可靠性较高。可根据QTL作图过程中不同需要进行各自合适的选择。

外文摘要:

Provided the reference for the model selection of QTL(quantitative trait locus)mapping .Based on the markers and trait of multiple regression model ,using forward ,backward and stepwise methods to decide the choice of variable regression .Focuses on ridge regression and partial least-square regression to solute the linear problem between variables Since the strong altogether linear between the mark variables,it is not enough to eliminate some variables.On the one hand ,Ridge regression can establish relatively accurate model ,but it is unstable to predict and the effect is not good enough.On the other hand,although the model establishment of partial least-squares regression method is no better than ridge regression , the partial least-squares regression can get much closer prediction. We can choose appropriate method accorded to the different need for quantitative trait mapping.

参考文献总数:

 12    

馆藏号:

 本071601/1145    

开放日期:

 2024-03-14    

无标题文档

   建议浏览器: 谷歌 360请用极速模式,双核浏览器请用极速模式