- 无标题文档
查看论文信息

中文题名:

 小波分析在股市数据分析及预测中的应用    

姓名:

 周董    

保密级别:

 公开    

学科代码:

 070101    

学科专业:

 数学与应用数学    

学生类型:

 学士    

学位:

 理学学士    

学位年度:

 2008    

学校:

 北京师范大学    

校区:

 北京校区培养    

学院:

 数学科学学院    

第一导师姓名:

 崔丽    

第一导师单位:

 北京师范大学数学科学学院    

提交日期:

 2008-05-23    

答辩日期:

 2008-05-15    

外文题名:

 Application of Wavelets in Stock Index Data Analysis and Forecasting    

中文关键词:

 小波的分解和重构 ; 多分辨分析 ; 股票指数 ; 预测    

中文摘要:
本文将小波的方法引入到股票指数的分析和未来趋势的预测中,利用小波的分解和重构,以及其多尺度分析的功能,分析历史数据并提出了一种预测其趋势的方法。主要思想是将原数据当作一维时间信号作小波分解,并逐层重构,将重构序列用余弦函数逼近和预测,再将各层结果整合得到对原信号的逼近和预测。这种方法的特点在于从股指的历史数据中总体把握股指和其收益率的非线性波动特征,从而对未来一段时间进行预测。通过对上证指数1990年底开始至2007年结束这段时间的日收盘指数运用该方法进行分析,得到了股指在十几年内的变化规律具有周期性这一行为特征,在此基础上对未来趋势做出预测,经验证得到了较为理想的结果。
外文摘要:
Using wavelet decomposition, reconstruction and multi-scale analysis, we analyze stock data and conclude a method of long-term trend forecasting. The main idea of this approach is to consider stock index data as a one-dimensional time signal and apply wavelet decomposition and reconstruction to original signal, approximate and forecast reconstructed series layer-by-layer by using cosine functions, then conclude final approximation and forecasting of original signal. The advantage of the wavelet long-term trend forecasting approach is that it can reflect long-term trend and non-linear characteristic of the stock index and daily gain rate series fluctuation depending on the historical data, thus we can forecast the stock index in a relatively long future. By applying this wavelet long-term trend forecasting approach to the historical data of Shanghai Composite Index (SCI) daily closing index from 1990 to 2007, we generalize that SCI follows a behavior characteristic of periodic variation during past 16 years. The forecasting of stock index trend is based on the periodic fluctuation and the results turn to be relatively optimal.
参考文献总数:

 6    

插图总数:

 15    

插表总数:

 0    

馆藏号:

 本070101/08131    

开放日期:

 2008-05-23    

无标题文档

   建议浏览器: 谷歌 360请用极速模式,双核浏览器请用极速模式