- 无标题文档
查看论文信息

中文题名:

 随机游动的常返性及其判定    

姓名:

 武晓佳    

保密级别:

 公开    

论文语种:

 中文    

学科代码:

 071201    

学科专业:

 统计学    

学生类型:

 学士    

学位:

 理学学士    

学位年度:

 2018    

学校:

 北京师范大学    

校区:

 北京校区培养    

学院:

 数学科学学院    

第一导师姓名:

 洪文明    

第一导师单位:

 数学科学学院    

第二导师姓名:

     

提交日期:

 2018-05-23    

答辩日期:

 2018-05-08    

外文题名:

 Proof for the Recurrence and Transience of Random Walks    

中文关键词:

 随机游动 ; 常返性 ; 逃逸概率 ; 电网络 ; Rayleigh’s短路断路法    

中文摘要:
本文对随机游动的常返性的判定进行了比较深入的研究.主要介绍了如何用逃逸概率来判定随机游动的常返性.逃逸概率即随机游动的质点在到达a之前先到达b的概率,利用其调和性可与电网络上的电压建立联系,从而可以通过电网中相关理论来计算逃逸概率. 文章从一维随机游动入手,先将常返性的判定问题转化为了逃逸概率的计算问题,再利用逃逸概率的调和性将其与电压建立联系,并逐步拓展到图上的的随机游动,从而得出结论——随机游动的常返性与其对应的电网从原点到无穷处的有效电阻有关,若有效电阻为∞,则该随机游动是常返的,否则为暂留的.最后利用这一结论,通过Rayleigh’s短路断路法证明了二、三维上的简单随机游动的常返性与暂留性.
外文摘要:
In this thesis, we will make a deep research into the proof for the recurrence and transience of Random walks. The main purpose of this paper is to introduce how to use the escape probability to prove the recurrence and transience of Random walks. The escape probability is the probability that the Random walks reaches position b before it reaches position a. For the escape probability is a harmonic function, we can establish the connection between the escape probability and the voltage in electric network. Then we can calculate the escape probability by using the relevant theory in electric network. Starting from the Random walks in one dimension, we firstly transform the problem of proving its recurrence into the calculation of the escape probability. Then, by using the harmonicity of the escape probability, we establish the connection between the escape probability and the voltage. Gradually, we extend it to the Random walks on graph. The conclusion is that the recurrence of Random walks is related to the effective resistance to infinity of corresponding electric network. Finally, we successfully prove the recurrence and transience of simple random walk in two as well as three dimensions by using the conclusion above and the Rayleigh’s short-cut method.
参考文献总数:

 9    

作者简介:

 北京师范大学数学系统计学方向本科生    

插图总数:

 11    

插表总数:

 0    

馆藏号:

 本071201/18020    

开放日期:

 2019-07-09    

无标题文档

   建议浏览器: 谷歌 360请用极速模式,双核浏览器请用极速模式