中文题名: | 非配称马氏链的势论 |
姓名: | |
保密级别: | 公开 |
论文语种: | 中文 |
学科代码: | 070103 |
学科专业: | |
学生类型: | 博士 |
学位: | 理学博士 |
学位类型: | |
学位年度: | 2020 |
校区: | |
学院: | |
研究方向: | 随机过程及交叉领域 |
第一导师姓名: | |
第一导师单位: | |
提交日期: | 2020-06-24 |
答辩日期: | 2020-06-24 |
外文题名: | Potential theory for asymmetric Markov chains |
中文关键词: | |
外文关键词: | |
中文摘要: |
本文章研究非配称马氏链的势论及其应用.第二章给出不可约非常返马氏链过份测度的新的构造及性质.第三章给出非配称常返和非常返马氏链单个集合容度的变分公式并通过一个经典例子验证了新的变分公式.第四章给出以过份测度为参考测度,非配称马氏链两种类的Dirichlet准则,从而得到可加泛函的变分公式及两个集合容度的变分公式.作为这些变分准则的应用,我们讨论了马氏链常返性的比较定理及一些等式的证明. |
外文摘要: |
In this thesis, we study the potential theory for asymmetric Markov chains and their applications. In Chapter 2, we present the new construction and properties of the excessive measure for irreducible transient Markov chains. In Chapter 3, we give the variational formulas of capacity of a set for asymmetric recurrent and transient Markov chains, and take a classical example to illustrate the new variational formulas. In Chapter 4, we give two kinds of Dirichlet principles by taking excessive measure as reference measure. Then we get the variational formulas of addictive functional and capacity for two sets. As applications of these variational formulas, we provide comparison theorems for recurrence and new proof of some equality. |
参考文献总数: | 42 |
作者简介: | 程志雯,女,生于1993年6月,山西晋中人.主要教育背景如下: 2011.9-2015.6北京师范大学数学科学学院本科生,专业:统计学; 2015.9-2020.7北京师范大学数学科学学院硕博连读生,专业:概率论与数理统计; 发表论文情况: [1] Z.-W. Cheng, Y.-H. Mao. Variational Formula of Capacity for Asymmetric Markov chains. Submitted to Statistics and Probability Letters. [2] Z.-W. Cheng, Y.-H. Mao. Variational Formulas of Addictive Functional for Asymmetric Markov chains. Finished. |
开放日期: | 2021-06-24 |