中文题名: | 基于PCA-DE-Informer的沪深300股票指数预测 |
姓名: | |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 025100 |
学科专业: | |
学生类型: | 硕士 |
学位: | 金融硕士 |
学位类型: | |
学位年度: | 2024 |
校区: | |
学院: | |
研究方向: | 金融时间序列预测;量化投资 |
第一导师姓名: | |
第一导师单位: | |
提交日期: | 2024-05-28 |
答辩日期: | 2024-05-18 |
外文题名: | Forecasting CSI 300 Stock Index Based on PCA-DE-Informer |
中文关键词: | 股票指数预测 ; 量化投资 ; 深度学习 ; 超参数寻优 ; Transformer ; Informer ; 差分进化算法 |
外文关键词: | Stock index forecasting ; Quantitative investment ; Deep learning ; Hyperparametric optimization ; Transformer ; Informer ; Differential evolution Algorithm |
中文摘要: |
股票指数能够反映股票市场总体水平,如果能准确的预测股票指数的走势,不仅有利于政府或监管机构制定更有效的调控政策,也能帮助投资者实现更好的投资表现。由于高噪声、非平稳等特点,股票指数价格预测一直是时间序列任务中的挑战,由于股票指数不具备基本的平稳性、独立同分布等统计特性,因此用传统的线性时间模型来预测难度较大,效果也不佳。深度学习模型具有处理大规模数据的能力,也能抽取更深层次数据间的关系,具备更好的非线性预测能力,因此股票指数预测可成为深度学习模型发挥效能的重要领域。 |
外文摘要: |
The stock market serves as an indicator of a country's economy. The stock price index is a statistic that measures and reacts to the overall level and trend of the stock. Accurately predicting the trend of the stock index is beneficial for the government or regulatory agencies to formulate more effective regulatory policies. It also helps investors make smarter investment decisions and gain higher returns. Predicting stock index prices has always been a challenging task in Time-Series Analysis due to high levels of noise and non-stationarity. Traditional linear time models are not effective in achieving accurate predictions because stock indices lack basic statistical properties such as stationarity and independent homogeneous distribution. Deep learning models can effectively predict stock indexes due to their ability to handle large-scale data, extract deeper data features, and process nonlinear information. |
参考文献总数: | 62 |
馆藏地: | 总馆B301 |
馆藏号: | 硕025100/24012Z |
开放日期: | 2025-05-28 |