中文题名: | 离散时间单死过程的可加泛函 |
姓名: | |
保密级别: | 公开 |
论文语种: | 中文 |
学科代码: | 070103 |
学科专业: | |
学生类型: | 硕士 |
学位: | 理学硕士 |
学位类型: | |
学位年度: | 2020 |
校区: | |
学院: | |
研究方向: | 随机过程及交叉领域 |
第一导师姓名: | |
第一导师单位: | |
提交日期: | 2020-06-23 |
答辩日期: | 2020-05-30 |
外文题名: | ADDITIVE FUNCTIONALS FOR DISCRETE-TIME SINGLE DEATH PROCESSES |
中文关键词: | |
外文关键词: | Discrete-time Single-death Processes ; Ergodic Theory ; Central Limit Theorems ; Asymptotic Variance |
中文摘要: |
本文对可数状态空间上离散时间的单死过程, 研究其可加泛函的矩. 首先由可加泛函的一阶矩出发, 结合最小非负解理论和单调收敛定理推导出可数状态空间上首中时可加泛函一阶矩的显式表示. 然后, 通过解单死过程的Poisson方程, 给出有限状态空间上可加泛函高阶矩的显式表示. 进而, 结合可加泛函矩的另一种表示, 验证其非负性, 并证明可加泛函高阶矩满足单调收敛定理, 运用求极限的方法, 给出可数状态空间上首中时可加泛函高阶矩的显式表示. 最后, 将这个结果应用于离散时间单死过程的遍历理论及中心极限定理, 给出可加泛函一阶矩在函数遍历理论中的应用, 中心极限定理成立的充分必要条件和渐近方差的计算方法.
﹀
|
外文摘要: |
In this paper we are interested in calculating the additive functionals of the first hitting time for discrete-time single death processes on a countable state space, which is motivated by investigating ergodic theory and central limit theorems. In the context of the additive functionals, we get an explicit representation for first moment and high order moment of the additive functionals of the first hitting time for discrete-time single death processes. To do so, we introduce theories of the minimal nonnegative solution and the monotone convergence theorem. These theories combined with some other techniques are proved useful for investigating the additive functionals. In the context of ergodic theory, first moment of the additive functionals are applied to ergodic theory. In the context of central limit theorems, sufficient and necessary conditions and the way to calculate asymptotic variance are given.
﹀
|
参考文献总数: | 23 |
开放日期: | 2021-06-23 |