中文题名: | 超重元素Z=119-121,126合成机制的理论研究 |
姓名: | |
保密级别: | 公开 |
论文语种: | 中文 |
学科代码: | 070202 |
学科专业: | |
学生类型: | 硕士 |
学位: | 理学硕士 |
学位类型: | |
学位年度: | 2022 |
校区: | |
学院: | |
研究方向: | 超重核合成 |
第一导师姓名: | |
第一导师单位: | |
提交日期: | 2022-04-20 |
答辩日期: | 2022-05-31 |
外文题名: | Theoretical study on the synthesis mechanism of superheavy elements Z=119-121,126 |
中文关键词: | |
外文关键词: | superheavy element ; fusion reaction ; dinuclear system model ; optimal reaction system ; evaporation residue cross section |
中文摘要: |
超重元素的合成是核物理研究的前沿课题之一。本研究工作在双核系统(DNS)模型的基础上围绕着超重元素 Z=119、120、121和 126 的合成机制开展研究,计算了合成超重元素 Z=119、120、121 和 126的产生截面。在考虑实验可行性的基础上,预言合成超重核的最佳弹靶体系、最大蒸发剩余截面(ERCS)并给出反应所需的最佳入射能量。分析了弹靶碰撞方向、弹核同位旋、质量不对称度和靶核同位旋对蒸发剩余截面的影响。主要研究内容如下: 1、为合成超重元素Z=119,计算了 42Ca+252Es、44Ca+252Es、44Ca+254Es、48Ca+252Es、48Ca+254Es、54Cr+243Am、50Ti+247Bk和 50Ti+249Bk的蒸发剩余截面。预言合成超重元素Z=119 的最佳反应是 48Ca+254Es→3n+299119,对应的最佳入射能量和最大蒸发剩余截面分别为 Ec.m.=210.9 MeV 和σERmax = 4237 fb。通过对比反 应 44Ca+254Es 和 48Ca+254Es,分析了弹核同位旋对蒸发剩余截面的影响。 2、为合成超重元素Z=120,计算了 46Ca+257Fm、48Ca+257Fm、46Ti+251Cf、50Ti+251Cf、50Ti+252Cf、54Cr+248Cm、55Mn+243Am 和 64Ni+238U的蒸发剩余截面。预言合成超重元素 Z=120 的最佳反应是 46Ti+251Cf→2n+295120,对应的最佳入射能量和最大蒸发剩余截面分别为 Ec.m.=212.6 MeV 和σERmax = 4229 fb。通过比较反应 50Ti+252Cf 和 54Cr+248Cm,分析了质量不对称度对内部熔合位垒以及蒸发剩余截面的影响。 3、为合成超重元素 Z=121,考虑靶核半衰期的前提下,选取 25 个反应体系,计算了合成超重元素 Z=121 的蒸发剩余截面。在考虑实验可操作性的基础上,预言反应 252Es (46Ti, 1n) 最有可能在实验上合成 Z=121 号未知新核素,对应的最佳入射能量和最大蒸发剩余截面分别为 Ec.m.=209.4 MeV 和 σERmax = 1068 fb;分析了上述反应的最大蒸发剩余截面出现在 1n 蒸发道的具体原因;通过对比反应 46Ti+252,253,254,255Es 的俘获截面、熔合几率、存活几率和蒸发剩余截面,分析了靶核同位旋对蒸发剩余截面的影响。 4、 为合成超重元素Z=126, 选取23个弹靶体系 , 计算合成超重元素Z=126的蒸发剩余截 面 。 预言合成超重元素 Z=126的最佳反应是248Cm (66Zn, 2n),对应的最佳入射能量和最大蒸发剩余截面分别为 Ec.m.=300.9 MeV和 σERmax = 0.813 fb。分析了准裂变位垒与质量不对称度、库仑因子的关系。本研究工作的创新点如下:(1)计算了超重元素 Z=119的产生截面,预言合成 Z=119 的最佳反应体系为 48Ca+254Es,最大蒸发剩余截面 σERmax = 4237fb;(2)计算了超重元素 Z=120的产生截面,预言合成 Z=120 的最佳反应体系为 46Ti+251Cf,最大蒸发剩余截面 σERmax = 4229 fb;(3)为合成超重元素 Z=121,在考虑弹靶可利用性的前提下,计算了 25 个反应体系的产生截面,考虑实验操作性的基础上,预言反应 46Ti+252Es 为产生超重元素 Z=121的最佳反应体系,最大蒸发剩余截面 σERmax = 1068 fb;(4)预言 248Cm (66Zn, 2n) 是合成超重元素 Z=126 的最佳反应体系,但最大蒸发剩余截面 σERmax = 0.813 fb 非常低,目前低于实验可测量极限。 |
外文摘要: |
The synthesis of superheavy elements has been one of the frontier issues in nuclear physics. This paper mainly carries out a detailed study for the synthesis of superheavy elements Z=119, 120, 121 and 126 within the frame work of dinuclear system model. Theoretical production cross sections have been calculated for the superheavy elements Z=119, 120, 121 and 126. By considering the experimental feasibility, the most favorable projectile-target combination, evaporation residue cross sections and the incident energy for synthesis the superheavy elements have been given. The influence of orientation effect, projectile isospin, mass asymmetry and target isospin on the evaporation residue cross sections has been analyzed meticulously. The specific contents are summarized as follows: Firstly, for the synthesis of superheavy element Z=119, within the framework of dinuclear system model, the evaporation residue excitation functions of 42Ca+252Es、44Ca+252Es、44Ca+254Es、48Ca+252Es、48Ca+254Es、54Cr+243Am、50Ti+247Bk and 50Ti+249Bk have been calculated. The system 48Ca+254Es→ 3n+299119 is the promising one with the maximal evaporation residue cross section σERmax = 4237 fb and the incident energy Ec.m.=220.1 MeV. The influence of projectile isospin on evaporation residue cross section have been investigated by comparing 44Ca+254Es and 48Ca+254Es. Secondly, for the synthesis of superheavy element Z=120, the evaporation residue excitation functions of 46Ca+257Fm、48Ca+257Fm、46Ti+251Cf、50Ti+251Cf、50Ti+252Cf、54Cr+248Cm、55Mn+243Am and 64Ni+238U have been calculated. 46Ti+251Cf→ 2n+295120 is the optimal one, corresponding to the maximal evaporation residue cross section σERmax = 4229 fb and the incident energy Ec.m.=212.6 MeV. In addition, effect of mass asymmetry on evaporation residue cross section has been studied by comparing 50Ti+252Cf and 54Cr+248Cm. Thirdly, for the synthesis of superheavy element Z=121, The evaporation residue excitation functions of 25 reaction systems have been calculated after considering the half-lives of projectile nuclei. On the basis of considering experimental operability, 252Es(46Ti, 1n) is the optimal projectile-target combination for the synthesis of superheavy element Z=121 with the maximal evaporation residue cross section (incident energy) σERmax = 1068 fb (Ec.m.=209.4 MeV). The specific reasons why the maximal evaporation residue cross section of the above reaction system appeared at 1n evaporation channel are analyzed. By comparing the capture cross section, fusion probability, survival probability and evaporation residue excitation functions of 46Ti+ 252,253,254,255Es, the influence of projectile isospin on evaporation residue cross sections has been analyzed. Lastly, the evaporation residue excitation functions of 23 stable reaction systems have been calculated for the synthesis of superheavy elements Z=126. 248Cm(66Zn, 2n) is found to be the the best choice and the maximal evaporation residue cross section (incident energy) is σERmax = 0.813 fb (Ec.m.=300.9 MeV). Dependence of quasi-fission barrier on mass asymmetry and Coulomb factor has been studied. The innovations of this paper are as follows: 1. The production cross sections of the superheavy element Z=119 have been calculated, 48Ca+254Es is found to be the optimum system for the synthesis of Z=119 with the maximal evaporation residue cross section σERmax = 4237 fb. 2. The evaporation residue excitation functions have been calculated for the synthesis of superheavy element Z=120, 46Ti+251Cf is the probable choice with σERmax = 4229 fb. 3. The evaporation residue excitation functions of 25 reaction systems have been calculated for the synthesis of Z=121 after considering the availability of projectile and target, 46Ti+252Es is the best projectile-target combination with σERmax = 1068fb. 4. This paper predicts that the reaction 248Cm (66Zn, 2n) is the promising one for the synthesis of superheavy element Z=126 with the maximal evaporation residue cross section σERmax = 0.813 fb which is too low to be detected in experiment currently. |
参考文献总数: | 125 |
作者简介: | 王晨(Chen Wang),女,汉族,1997年出生于河南省漯河市。2015年9月至2019年7月, 在湖南师范大学物理与电子科学学院攻读物理学专业,2019 年6月获得理学学士学位。2019年9月至2022年6月,在北京师范大学核科学与技术学院攻读粒子物理与原子核物理专业,师从张丰收教授,研究方向为“超重核合成”。 |
馆藏号: | 硕070202/22003 |
开放日期: | 2023-06-15 |