- 无标题文档
查看论文信息

题名:

 目前流行的人工智能对于研究空间旋转曲面问题的思考    

作者:

 郭宇芯    

保密级别:

 公开    

语种:

 chi    

学科代码:

 070101    

学科:

 数学与应用数学    

学生类型:

 学士    

学位:

 理学学士    

学位年度:

 2024    

校区:

 珠海校区培养    

学院:

 文理学院    

导师姓名:

 袁荣    

导师单位:

 文理学院    

提交日期:

 2024-06-28    

答辩日期:

 2024-05-10    

外文题名:

 An Active Learning Method Based on Clustering and Uncertainty    

关键词:

 生成式人工智能模型 ; 空间旋转曲面问题 ; 数学建模 ; 问题解析 ; 数学教育    

外文关键词:

 generative artificial intelligence models ; patial rotational surface problems ; mathematical modeling ; problem analysis ; mathematics education    

摘要:

本论文旨在探讨生成式人工智能模型在研究空间旋转曲面问题中的应用
和潜力。传统数学建模方法在解决复杂的空间旋转曲面问题时存在挑战,需要复杂的数学推导和计算过程。而生成式人工智能模型通过学习大量的数学原理和示例数据,具备强大的问题解析和生成能力,能够自动分析和理解数学问题,并生成准确的解决方案。此外,生成式人工智能模型具有灵活的架构和参数配置,可以针对不同类型的旋转曲面问题进行优化和调整,适应各种复杂的数学形式和问题要求。引入生成式人工智能模型对数学教育和研究领域具有重要意义,为学生和研究者在空间旋转曲面问题上的创新和探索提供新的思路和方法。本论文将通过问题陈述和背景介绍、相关概念和理论探讨、现有研究综述以及研究思路和方法的分析,深入探索生成式人工智能模型在空间旋转曲面问题研究中的应用。通过本论文的研究,旨在为学术界和相关领域的研究人员提供新的理论观点、概念模型或研究路径,促进学术研究的进展与创新。

外文摘要:

This paper aims to explore the application and potential of generative artificial intelligence models in studying the problem of spatial rotational surfaces. Traditional mathematical modeling methods face challenges in solving complex spatial rotational surface problems, requiring intricate mathematical derivations and
computational processes. On the other hand, generative artificial intelligence models, through learning from a vast amount of mathematical principles and example data, possess powerful capabilities in problem analysis and generation. They can automatically analyze and comprehend mathematical problems,
generating accurate solutions. Additionally, generative artificial intelligence models have flexible architectures and parameter configurations, allowing optimization and adjustment for different types of rotational surface problems, accommodating various complex mathematical forms and problem requirements. The introduction of generative artificial intelligence models holds significant significance for mathematics education and research, providing new perspectives and methods for innovation and exploration in the field of spatial rotational surfaces for students and researchers. This paper will delve into the application of generative artificial intelligence models in the study of spatial rotational surface problems through problem statements and  background introduction, exploration of relevant concepts and theories, review of existing research, and analysis of research approaches and methods. Through this research, the aim is to provide new theoretical viewpoints, conceptual models, or research pathways for the academic community and relevant
fields, promoting progress and innovation in academic research.

参考文献总数:

 36    

馆藏号:

 本070101/24182Z    

开放日期:

 2025-06-29    

无标题文档

   建议浏览器: 谷歌 360请用极速模式,双核浏览器请用极速模式