- 无标题文档
查看论文信息

中文题名:

 数学建模素养视角下的高考数学试题研究 ——以 2023 年高考试题为例    

姓名:

 袁澍瑜    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 070101    

学科专业:

 数学与应用数学    

学生类型:

 学士    

学位:

 理学学士    

学位年度:

 2024    

校区:

 珠海校区培养    

学院:

 未来教育学院    

第一导师姓名:

 郭玉峰    

第一导师单位:

 文理学院    

提交日期:

 2024-06-15    

答辩日期:

 2024-05-12    

外文题名:

 Study on the Mathematics Examination Questions of the Higher Education Examination from the Perspective of Mathematical Modeling Literacy -Taking the 2023 Higher Education Examination Questions as an Example    

中文关键词:

 数学建模 ; 试题评价 ; SEC 一致性    

外文关键词:

 Mathematical Modeling ; Test Question Evaluation ; SEC Consistency    

中文摘要:

《普通高中数学课程标准(2017年版2020年修订)》(以下简称新课标)把数学建模素养列为六大核心素养之一,并且首次将其归为必修课程,数学建模素养的培养受到越来越多的关注。因此新高考改革中如何对数学建模素养进行考查成为一大研究趋势。 本研究选取2023年全国甲卷(文理科)、全国乙卷(文理科)、新高考全国Ⅰ卷和新高考全国Ⅱ卷共六份试卷作为研究对象,探究它们对数学建模素养的考查内容和形式。 先对六份高考试卷数学建模试题进行整体上的分析,并通过题目背景、过程推理、建模工具等八个维度进行建模试题评价,基于综合难度模型对试题建模部分难度的评价进行研究,最后借助SEC一致性分析模式,对数学建模试题与课标的一致性进行研究。得出下面结论: (1)本研究选定的六份高考数学试题建模部分的题目对题目背景和题目阅读量考查较多,注重模型的理解和运用。涉及到的数学建模试题中各主题内容均有涉及,其中概率与统计知识考查较多。 (2)本研究选定的六份高考数学试题的建模试题与课标的一致性系数,即Porter一致系数均未达到0.5,说明六套试题中考查的建模试题与课标要求之间并没有展现出显著的相关性,高考数学建模试题和课标的整体一致性程度一般。 其次,根据本研究得出的结论,给现在数学建模试题的命制和一线教师数学建模的教学过程提供一些思考和建议。

外文摘要:

The standard of mathematics curriculum for general secondary schools (2017 edition, revised 2020) (hereinafter referred to as the new curriculum standard) includes the competence of mathematical modelling as one of the six core competences and classifies it as a compulsory subject for the first time, and the cultivation of mathematical modelling competence has received more and more attention. Therefore, how to test mathematical modelling competence in the new reform of university entrance examination has become an important research trend. In this study, six examination papers, namely National Paper A (Arts and Science), National Paper B (Arts and Science), National Paper I of the NCE and National Paper II of the NCE in 2023, were selected to examine the content and form of the mathematical modeling test. First, we analyze the mathematical modeling questions of the six GCE exam papers as a whole, evaluate the modeling questions in terms of eight parameters such as thematic context, procedural reasoning, modeling tools, etc., examine the difficulty assessment of the modeling questions on the basis of a global complexity model and, finally, examine the relevance of the mathematical modeling questions to the curriculum using the SEC correspondence analysis model. The following conclusions were drawn: (1) The questions in the modelling section of National Paper A (Arts and Sciences), National Paper B (Arts and Sciences), National Paper I of the new HKALE and National Paper II of the new HKALE explored more topic background and reading questions and focused on the understanding and application of models. The content of each topic was covered by the mathematical modelling questions, testing more knowledge of probability and statistics. (2) The coherence coefficients, i.e. Porter's coherence coefficients, between the modeling questions of the six GCE mathematics exams selected for this study and the standards did not reach 0.5, which indicates that there is no significant correlation between the modeling questions of the six exams and the requirements of the standards and that the overall coherence between the modeling questions of the GCE mathematics exams and the standards is moderate. Secondly, based on the conclusions drawn from this study, some reflections and suggestions are made on the current mathematical modelling test questions and the teaching process of mathematical modelling by frontline teachers.

参考文献总数:

 26    

馆藏号:

 本070101/24136Z    

开放日期:

 2025-06-15    

无标题文档

   建议浏览器: 谷歌 360请用极速模式,双核浏览器请用极速模式