中文题名: | 具有不规则耗散项的不可压缩流体力学方程的适定性 |
姓名: | |
保密级别: | 公开 |
学科代码: | 070101 |
学科专业: | |
学生类型: | 博士 |
学位: | 理学博士 |
学位类型: | |
学位年度: | 2021 |
校区: | |
学院: | |
研究方向: | 偏微分方程及其应用 |
第一导师姓名: | |
第一导师单位: | |
提交日期: | 2021-06-18 |
答辩日期: | 2021-06-18 |
外文题名: | The well-posedness for incompressible fluid dynamics with irregular dissipation |
中文关键词: | Boussinesq~方程组 ; Oldroyd-B~模型 ; 不规则耗散 ; 适定性 ; 衰减估计. |
外文关键词: | Boussinesq equations ; Oldroyd-B model ; Irregular dissipation ; Well-posedness ; Decay estimate. |
中文摘要: |
|
外文摘要: |
This doctoral thesis studies the well-posedness theory of the initial (boundary) value problem for incompressible Boussinesq equations and Oldroyd-B model with irregular dissipation, where the irregular dissipation includes anisotropic dissipation and fractional dissipation. The Boussinesq equations describe the convection phenomenon of geophysical flow, and play a crucial role in the study of atmosphere, oceanographic flows and Rayleigh-B\'enard convection. The Oldroyd-B model governs the motion of a class of complex non-Newtonian fluids, which obeys a constitutive law. Further, it can describe the viscoelastic properties of dilute polymer solutions under general flow conditions. |
参考文献总数: | 133 |
馆藏地: | 图书馆学位论文阅览区(主馆南区三层BC区) |
馆藏号: | 博070101/21019 |
开放日期: | 2022-06-18 |