中文题名: | 电力系统网络的网络重构及其重要节点识别 |
姓名: | |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 071101 |
学科专业: | |
学生类型: | 硕士 |
学位: | 理学硕士 |
学位类型: | |
学位年度: | 2023 |
校区: | |
学院: | |
研究方向: | 复杂网络 |
第一导师姓名: | |
第一导师单位: | |
提交日期: | 2023-06-13 |
答辩日期: | 2023-06-03 |
外文题名: | The Reconstruction of Networks and Node Importance Identification in Power Systems |
中文关键词: | |
外文关键词: | Spatial networks ; Network reconstruction ; Self-organisation ; Network evolution |
中文摘要: |
现实世界中的基础设施系统以及自然生物系统等都是复杂系统的具体例子。这些系统与人们的生活息息相关,是保障社会运行发展的支撑和认识社会自然现象的关键。常常使用复杂网络来描述这些具有相互联系的结构。然而对于现实世界的系统,空间网络是更为准确的概念。此外,就结构信息而言,收集连边信息的难度常常会高于收集节点信息。这使得从节点信息出发,对于空间网络的连边进行预测、重构是一类具有很高应用价值的问题。本文讨论空间网络的重构问题,从两个角度对空间网络重构问题进行探讨:其一,通过估计网络的拓扑性质,尝试使用最大熵方法重构网络结构。其二,讨论网络的演化机制重构网络的拓扑结构。在此基础之上,本文以网络上级联失效现象的例子,说明了基于重构得到的网络确实可以更好地对系统做出分析。 |
外文摘要: |
Infrastructure and biological systems are examples of complex systems closely intertwined with people’s lives. They support human society and work as a key to comprehending social and natural phenomena. While complex networks are used to describe structures with interacted relationships, spatial networks are more suitable for real-world systems. Moreover, collecting information about nodes is easier than links in practice, making link prediction and reconstruction critical tasks. In this dissertation, we focus on the reconstruction of spatial networks and tackle the challenge from two perspectives: estimating the network’s topological properties to determine its structure using the Maximum Entropy Principle (MaxEnt) and investigating the evolutionary mechanisms of the networks. Additionally, we take the example of cascading failures to show that the reconstructed network can help us better perform analysis. |
参考文献总数: | 112 |
馆藏号: | 硕071101/23002 |
开放日期: | 2024-06-13 |