中文题名: | 有界光滑区域上的SQG方程的光滑解的局部适定性 |
姓名: | |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 070101 |
学科专业: | |
学生类型: | 学士 |
学位: | 理学学士 |
学位年度: | 2024 |
校区: | |
学院: | |
研究方向: | 偏微分方程 |
第一导师姓名: | |
第一导师单位: | |
提交日期: | 2024-05-21 |
答辩日期: | 2024-05-10 |
外文题名: | The local well-posedness of smooth solutions for the SQG equation in bounded domains with smooth boundary |
中文关键词: | |
外文关键词: | geophysical fluid dynamics ; SQG equation ; local well-posedness ; viscid equation |
中文摘要: |
SQG 方程是描述地球物理流体力学的一个重要模型,这一方程无论是在理论研究,还是在气象学和海洋学领域都起着至关重要的作用。我们首先证明有界光滑区域上的SQG 方程的光滑解在粘性情况下的局部适定性和整体存在性,继而再借助Lp 有界性和线性对流扩散的相关定理,证明其在无粘情况下的光滑解的局部存在性,最后根据粘性情况下的相关推理同样得到唯一性,从而完成了无粘情况下的局部适定性证明。 |
外文摘要: |
The SQG equation is an important model to describe geophysical fluid dynamics, which plays a vital role in theoretical research, meteorology and oceanography. In bounded domains with smooth boundary, the smooth solution for the equation has local well-posedness. First, we prove the local well-posedness and global existence in the viscid case, and then with some relevant theorem of the Lp bounds and Linear advection–diffusion, we prove the local existence of the smooth solution in the inviscid case. Finally we obtain the uniqueness according to the similar reasoning in the viscid case, so as to complete the proof of the local well-posedness in the inviscid case. |
参考文献总数: | 5 |
插图总数: | 0 |
插表总数: | 0 |
馆藏号: | 本070101/24065 |
开放日期: | 2025-05-21 |