题名: |
人脑同伦功能亲和度图谱:方法、发育与演化
|
作者: |
陈丽珍
|
保密级别: |
公开
|
语种: |
chi
|
学科代码: |
04020002
|
学科: |
02认知神经科学(040200)
|
学生类型: |
博士
|
学位: |
理学博士
|
学位类型: |
学术学位
|
学位年度: |
2024
|
校区: |
北京校区培养
|
学院: |
心理学部
|
研究方向: |
人脑发育,脑功能同伦
|
导师姓名: |
左西年
|
导师单位: |
心理学部
|
提交日期: |
2024-06-11
|
答辩日期: |
2024-05-21
|
外文题名: |
Human Brain Mapping of Homotopic Functional Affinity: Methodology, Development, and Evolution
|
关键词: |
功能同伦 ; 偏侧化 ; 亲和度 ; 颞顶联合区 ; 发育 ; 演化
|
外文关键词: |
Functional homotopy ; Lateralization ; Affinity ; Temporo-parietal junction ; Development ; Evolution
|
摘要: |
︿
哺乳动物大脑在漫长的演化过程中维持着基本对称的左右双半球形态。大脑半球镜像区域为同伦脑区,具有功能相似性,称为功能同伦。胼胝体、前连合等白质纤维束为功能同伦提供了跨物种保守的解剖和结构连接基础,为理解人类心理行为的脑机制提供了演化视角。同伦功能连接方法基于同伦区域神经活动时间序列的同步性来量化功能同伦水平,以往研究已据此揭示了功能同伦水平在表征人脑功能组织及其发育与健康等方面的有效性。然而,该方法缺乏同伦脑连接理论的指导,未能对功能同伦的空间特性和解剖结构等进行考虑,从而限制了从拓扑、空间和时间三个不同维度对功能同伦进行系统研究。本文基于跨物种脑连接组双因子生成理论,提出一种全新的功能同伦图谱方法,暨同伦功能亲和度图谱(研究一),进一步考察了同伦功能亲和度图谱的多模态脑图谱空间关联(研究二),解析了同伦功能亲和度图谱的发育和演化模式(研究三和研究四)。
研究一借鉴社会网络和生态网络研究中“物以类聚、人以群分”的基本连接原则,基于跨物种保守的脑结构连接生成理论,以脑区的全脑空间连接模式表征其功能,进而以同伦脑区空间连接模式的同质性量化其功能的相似性。与社会网络类比,将这一相似性定义为同伦功能亲和度,表征同伦脑区之间的功能亲近程度。本研究首先研发了同伦功能亲和度的快速皮层计算方法,利用“美国人脑连接组计划”和“中国人脑连接组计划”的大规模静息态功能磁共振成像数据,绘制了人脑同伦功能亲和度图谱,揭示出同伦功能亲和度沿初级皮层到联合皮层递减的皮层分布模式。利用个体的重测数据,证实了该图谱方法在个体差异测量中的可靠性。通过选择演化等级最高的颞顶联合区作为感兴趣区域,展示了同伦脑区之间低功能亲和度水平是其空间连接模式差异性的体现,验证了该脑区功能亲和度的空间分布层次能有效体现认知功能的半球偏侧化,个体同伦功能亲和度能有效地预测其语言和社会认知功能表现。上述结果验证了同伦功能亲和度图谱方法对研究半球间信息处理的有效性,为后续研究奠定了方法学基础。
研究二基于不同空间尺度的脑图谱数据库,通过与同伦功能亲和度图谱之间的空间关联分析,解析其潜在的神经生物学基础。本研究在磁共振影像的毫米级尺度上,发现:皮层厚度低的区域,髓鞘化度高,便于信息的快速传递,体现出较高的同伦功能亲和度,反之则体现出较低的同伦功能亲和度,促使其沿初级—联合皮层主梯度方向降低,反映出所进行的半球间信息处理复杂度的提升。进一步在细胞构筑水平的关联分析发现:信息主要输入层(第IV层)中越厚的区域同伦功能亲和度水平越高,而信息输出层(第I/II/III/V/VI层)则呈现相反的趋势,这一趋势在深层皮质(第V/VI层)中更为明显,这为进一步理解各层神经元在半球信息处理中的贡献提供了初步基础。在更微观的神经元信息传递环路中,高转运体密度区域表现出较高的同伦功能亲和度,而高受体密度区域表现出较低的同伦功能亲和度。最后,在基因表达的尺度上发现:遗传调控更强的后侧脑区,表现出更高的同伦功能亲和度,而腹侧及前侧脑区来自遗传的调控更弱,可能使其更易受环境影响,表现出较低的同伦功能亲和度。上述结果为人脑同伦功能亲和度视角下的半球间信息处理过程提供了多层次生物学关联解释。
研究三利用来自“中国人彩巢计划”的加速纵向追踪队列样本及“美国人脑连接组发育计划”的横断面样本,分别计算了不同年龄组人群的同伦功能亲和度图谱,建模了皮层及其大尺度功能网络的同伦功能亲和度发育轨线,发现:随着年龄增加,皮层同伦功能亲和度整体水平逐渐降低,反映了同伦脑区在全脑功能连接模式上的相似性逐渐降低,半球间信息整合需求降低,从而体现出更强的功能偏侧化,这一发育趋势在联合皮层网络(默认网络和额顶网络)最为明显,并且跨样本可重复。在脑区层面,颞顶联合区较低的同伦功能亲和度水平所反映的半球功能特异性在学龄早期就已经存在,并在发育过程中持续增强。最后,智力关联分析揭示出超高智商儿童的同伦功能亲和度具备更快的发育速度,从而实现发育早期高水平半球间信息融合和后期高水平半球间信息分离,体现出高效而复杂的认知功能发展。综合研究二,以上结果为从微观“基因—神经元—环路—结构”到宏观“心理行为”全链条理解学龄儿童青少年脑智发育提供了活体且无创的功能影像学证据,具有多层次的发育生物学内涵。
研究四通过对人、猕猴、大鼠的皮层同伦功能亲和度图谱及其发育模式进行分析,进一步解析功能同伦发育的演化规律。首先绘制了人类、猕猴、大鼠的成年皮层同伦功能亲和度图谱,发现:灵长类皮层同伦功能亲和度均沿着其功能处理的层级而由高到低分布,暨在信息处理功能层级低的皮层中更高,在信息处理功能层级高的皮层则更低,反映出其内在半球间信息处理机制具有演化保守的特性;与之形成对比的是:随着演化等级越高,皮层同伦功能亲和度的空间变化的谱系就越宽,反映了半球间信息处理模式随着演化而趋于丰富多样。通过将发育过程分为儿童期、青春前期、青春后期以及成年早期四个阶段,进一步的跨物种比较功能同伦模式发现:这一演化特征随发育而加强,相比灵长类皮层,大鼠皮层不同区域同伦功能亲和度差异较小,各阶段间发育变化有限,负责复杂信息处理功能的部分区域也表现出了较高水平的功能同伦水平。这一表现可能与皮层演化起源以及不同物种的生态位和功能需求有关,也可能反映了动物活体影像技术的限制(如成像分辨率有限、麻醉的影响等)。
本文基于脑连接组生成理论研发了同伦功能亲和度图谱方法,验证了其作为评估人脑功能同伦影像学指标的有效性,展示了其用于刻画群体和个体间差异、揭示与发育有关的个体内变异以及与演化有关的物种间变异的潜力。本文初步研究表明,同伦功能亲和度图谱方法可作为半球间信息加工功能层级及其认知内涵的有效表征,为解析脑智发育和演化机制提供新的途径。本文以功能同伦为例,表明功能亲和度图谱方法有望为脑功能研究提供新的方法学视角,促进功能影像学在临床、教育等领域的转化应用。
﹀
|
外文摘要: |
︿
Throughout the lengthy evolutionary process, the mammalian brain has maintained a fundamentally symmetrical form with left and right hemispheres. Homotopic brain areas, known as mirror areas in the two hemispheres, exhibit functional similarity, referred to as functional homotopy. White matter fiber tracts such as the corpus callosum and anterior commissure facilitate information processing between homotopic areas, underpinning the cross-species conservation of functional homotopy's structural basis. This foundation aids in understanding the brain mechanisms behind human psychological behavior from developmental and evolutionary perspectives. Homotopic Functional Connectivity (HFC) assesses the level of functional homotopy based on the temporal synchronicity of homotopic neural activities. Previous studies have demonstrated the effectiveness of HFC in characterizing the functional organization of the human brain and its development and health. However, HFC relies solely on experimental time series data and lacks the guidance of a theoretical framework for brain connectivity, neglecting the spatial and anatomical features of functional homotopy, thus limiting systematic research from topological, spatial, and temporal dimensions. This thesis introduces a novel method for evaluating functional homotopy, the Homotopic Functional Affinity (HFA) (Study 1), based on the dual-factor generative theory of cross-species brain connectivity. Then it examines the association between the HFA maps and multimodal brain maps involving information from different spatial scales (Study 2) and further analyzes the developmental and evolutionary patterns of HFA maps (Studies 3 and 4).
Study 1 employs the foundational principle of "birds of a feather flock together" from social and ecological network research and based on the cross-species conserved structural brain connectivity generative theory, characterizes brain function of homotopic areas by their global spatial connectivity patterns. It quantifies the functional similarity based on the homophily of spatial connectivity patterns of homotopic areas, defining this similarity as HFA, which represents the functional proximity between homotopic areas. This study developed a fast cortical computation method for HFA, utilized large-scale resting-state functional magnetic resonance imaging data from the American and Chinese Human Connectome Projects, and charted the human cortical HFA maps. These maps reveal a cortical HFA distribution pattern that decreases from primary to associative cortices. Then, leveraging the test-retest data, the study confirmed the reliability of the HFA method in measuring individual differences. By focusing on the temporo-parietal junction, an area of the highest evolutionary hierarchy, the study demonstrated that low levels of functional affinity between the homotopic areas reflect their spatial connectivity pattern diversity, validating that this area's functional affinity spatial distribution hierarchy effectively represents the lateralization of the associated cognitive functions. Individual HFA maps can predict functional performance in language and social cognition processes. These findings confirm the method's effectiveness in studying inter-hemispheric information processing, establishing a methodological foundation for follow-up studies.
Study 2 based on brain map databases at different spatial scales, analyzed the spatial correlations between different brain maps and the HFA map, and explored the underlying neurobiological basis. At the millimeter scale of magnetic resonance imaging, regions with lower cortical thickness exhibit higher myelination, facilitating rapid information transmission and exhibited higher HFA, while the opposite regions exhibited lower HFA, indicating increased inter-hemispheric information processing complexity along the "primary-associative" cortical principal gradient. Further laminar architecture correlation analysis showed that areas with thickness in the primary input layer (layer IV) had higher HFA levels, whereas the opposite trend was observed in the output layers (layers I/II/III/V/VI), especially in the deeper cortical layers (layers V/VI). This provides a preliminary basis for understanding the contribution of neurons at different layers to inter-hemispheric information processing. In the micro-scale neuronal information transmission circuits, the analysis found that regions with higher transporter density exhibit higher HFA, whereas areas with high receptor density exhibited lower HFA. Finally, at the genetic expression level, posterior brain regions with stronger genetic regulation showed higher HFA, whereas ventral and anterior brain regions, which are less genetically regulated and more susceptible to environmental influences, displayed lower HFA. These results offer a multi-level biological explanation for the inter-hemispheric information processing process through the lens of the human brain HFA.
Study 3 used accelerated longitudinal samples from the "Chinese Color Nest Project" and cross-sectional samples from the "Human Connectome Project - Development" to calculate the HFA maps for different age groups, modeling the HFA developmental trajectories of cortical and large-scale functional networks. It was found that as age increases, the overall cortical HFA gradually decreases, reflecting a reduced similarity in the global functional connectivity pattern of homotopic brain areas and a diminished need for inter-hemispheric information integration, thus demonstrating stronger functional lateralization. This developmental trend was most pronounced in the associative cortical networks (default mode and frontoparietal control networks) and was consistent across samples. At the regional level, the strong hemispheric functional specialization in the temporo-parietal junction was present in early school age and continued to strengthen with development. Lastly, the analysis of the intellectual association with HFA development showed that children with superior intelligence had a faster pace of HFA development, achieving early high-level inter-hemispheric integration and later high-level inter-hemispheric specialization, indicating efficient and complex cognitive function development. Together with Study 2, these findings provide in vivo, non-invasive functional imaging evidence for understanding brain-mind development in school-aged children and adolescents, offering insights from the micro "gene-neuron-circuit-structure" to the macro "psychological behavior" levels of developmental biology.
Study 4 analyzed the HFA maps and their developmental patterns in humans, macaques, and rats, further elucidating the evolutionary trends of functional homotopy. Initially, the study mapped the cortical HFA of adults in these species, finding that in primates, the HFA distribution aligns with the hierarchy of functional processing, being higher in areas with primary functional processing and lower in areas with higher-level processing, indicating an evolutionary conservation of the inter-hemispheric information processing mechanism. In contrast, as the evolutionary hierarchy increases, the spatial variation of cortical HFA broadens, reflecting a diversification of inter-hemispheric information processing with evolution. Subsequent cross-species comparisons of functional homotopy patterns during four developmental stages—childhood, early adolescence, late adolescence, and early adulthood—showed an intensifying evolutionary trend with development. Compared to primate cortices, rat cortical regions exhibited smaller differences in HFA and limited developmental changes, with some complex information processing areas showing relatively high levels of functional homotopy. This characteristic may relate to the evolutionary origins of the cortex, the ecological niches and the functional needs of rodents compared to primates, or it may reflect the limitations of in vivo imaging technology in animals (resolution, anesthesia).
In conclusion, this thesis developed the HFA method based on the brain connectivity generative theory, validating it as an effective neuroimaging marker for assessing human brain functional homotopy. We demonstrated the potential of HFA in characterizing differences between populations and individuals, revealing intra-individual variations related to development and cross-species variations related to evolution. The preliminary studies in this thesis indicate that the HFA map can effectively represent the functional hierarchy and cognitive content of inter-hemispheric information processing, providing new avenues for analyzing mechanisms of brain-mind development and evolution. Using functional homotopy as an example, this thesis suggests that the functional affinity methods hold promise for providing a new methodological perspective in brain function research, facilitating the translational applications of functional imaging in clinical and educational settings.
﹀
|
参考文献总数: |
337
|
参考文献: |
︿
[1] Bullock T H. Comparative neuroscience holds promise for quiet revolutions[J]. Science, 1984, 225(4661): 473-478. [2] Holloway R L, Sherwood C C, Hof P R, et al. Evolution of the brain in humans–paleoneurology[J]. Encyclop Neurosci, 2009: 1326-1334. [3] Kaas J H. The evolution of the complex sensory and motor systems of the human brain[J]. Brain Res Bull, 2008, 75(2-4): 384-390. [4] Krubitzer L. The magnifcent compromise: Cortical feld evolution in mammals[J]. Neuron, 2007, 56(2): 201-208. [5] Buckner R L, Krienen F M. The evolution of distributed association networks in the human brain[J]. Trends Cognit Sci, 2013, 17(12): 648-665. [6] Shen K, Mišić B, Cipollini B N, et al. Stable long-range interhemispheric coordination is supported by direct anatomical projections[J]. Proc Natl Acad Sci U S A, 2015, 112(20): 6473-6478. [7] Roland J L, Snyder A Z, Hacker C D, et al. On the role of the corpus callosum in interhemispheric functional connectivity in humans[J]. Proc Natl Acad Sci U S A, 2017, 114(50): 13278-13283. [8] Wang D, Buckner R L, Liu H. Functional specialization in the human brain estimated by intrinsic hemispheric interaction[J]. J Neurosci, 2014, 34(37): 12341-12352. [9] Güntürkün O, Ströckens F, Ocklenburg S. Brain lateralization: A comparative perspective[J]. Physiol Rev, 2020. [10] Wan B, Bayrak Ş, Xu T, et al. Heritability and cross-species comparisons of human cortical functional organization asymmetry[J]. eLife, 2022, 11: e77215. [11] Corballis M C. How asymmetries evolved: Hearts, brains, and molecules[J]. Symmetry, 2021, 13(6): 914. [12] Betzel R F, Avena-Koenigsberger A, Goñi J, et al. Generative models of the human connectome[J]. Neuroimage, 2016, 124: 1054-1064. [13] Finn E S, Shen X, Scheinost D, et al. Functional connectome fngerprinting: Identifying individuals using patterns of brain connectivity[J]. Nat Neurosci, 2015, 18(11): 1664-1671. [14] Sydnor V J, Larsen B, Bassett D S, et al. Neurodevelopment of the association cortices: Patterns, mechanisms, and implications for psychopathology[J]. Neuron, 2021, 109(18): 2820- 2846. [15] Van Essen D C, Smith S M, Barch D M, et al. The WU-Minn Human Connectome Project: An overview[J]. Neuroimage, 2013, 80: 62-79. [16] Somerville L H, Bookheimer S Y, Buckner R L, et al. The lifespan Human Connectome Project in development: A large-scale study of brain connectivity development in 5–21 year olds[J]. Neuroimage, 2018, 183: 456-468. [17] Ge J, Yang G, Han M, et al. Increasing diversity in connectomics with the Chinese Human Connectome Project[J]. Nat Neurosci, 2023, 26(1): 163-172. [18] Liu S, Wang Y S, Zhang Q, et al. Chinese Color Nest Project: An accelerated longitudinal brain-mind cohort[J]. Dev Cognit Neurosci, 2021, 52: 101020. [19] Chen L Z, Holmes A J, Zuo X N, et al. Neuroimaging brain growth charts: A road to mental health[J]. Psychoradiology, 2021, 1(4): 272-286. [20] Fan X R, Wang Y S, Chang D, et al. A longitudinal resource for population neuroscience of school-age children and adolescents in China[J]. Sci Data, 2023, 10(1): 545. [21] Milham M P, Ai L, Koo B, et al. An open resource for non-human primate imaging[J]. Neuron, 2018, 100(1): 61-74. [22] Messinger A, Sirmpilatze N, Heuer K, et al. A collaborative resource platform for non-human primate neuroimaging[J]. Neuroimage, 2021, 226: 117519. [23] Grandjean J, Desrosiers-Gregoire G, Anckaerts C, et al. A consensus protocol for functional connectivity analysis in the rat brain[J]. Nat Neurosci, 2023, 26(4): 673-681. [24] Stark D E, Margulies D S, Shehzad Z E, et al. Regional variation in interhemispheric coordination of intrinsic hemodynamic fluctuations[J]. J Neurosci, 2008, 28(51): 13754-13764. [25] Zuo X N, Kelly C, Di Martino A, et al. Growing together and growing apart: Regional and sex differences in the lifespan developmental trajectories of functional homotopy[J]. J Neurosci, 2010, 30(45): 15034-15043. [26] Jin X, Liang X, Gong G. Functional integration between the two brain hemispheres: Evidence from the homotopic functional connectivity under resting state[J]. Front Neurosci, 2020, 14: 932. [27] Betzel R F, Bassett D S. Multi-scale brain networks[J]. Neuroimage, 2017, 160: 73-83. [28] Mars R B, Passingham R E, Jbabdi S. Connectivity fngerprints: From areal descriptions to abstract spaces[J]. Trends Cognit Sci, 2018, 22(11): 1026-1037. [29] Mollink J, Smith S M, Elliott L T, et al. The spatial correspondence and genetic influence of interhemispheric connectivity with white matter microstructure[J]. Nat Neurosci, 2019, 22 (5): 809-819. [30] Gilmore J H, Knickmeyer R C, Gao W. Imaging structural and functional brain development in early childhood[J]. Nat Rev Neurosci, 2018, 19(3): 123-137. [31] Zhao J, Manza P, Wiers C, et al. Age-related decreases in interhemispheric resting-state functional connectivity and their relationship with executive function[J]. Front Aging Neurosci, 2020, 12: 20. [32] Hill J, Inder T, Neil J, et al. Similar patterns of cortical expansion during human development and evolution[J]. Proc Natl Acad Sci U S A, 2010, 107(29): 13135-13140. [33] Friedrich P, Forkel S J, Amiez C, et al. Imaging evolution of the primate brain: The next frontier?[J]. Neuroimage, 2021, 228: 117685. [34] Bradshaw J L, Nettleton N C. The nature of hemispheric specialization in man[J]. Behav Brain Sci, 1981, 4(1): 51-63. [35] Gazzaniga M, Bogen J, Sperry R. Dyspraxia following division of the cerebral commissures [J]. Arch Neurol, 1967, 16(6): 606-612. [36] Duffy F H, Mcanulty G B, Albert M S. Effects of age upon interhemispheric eeg coherence in normal adults[J]. Neurobiol Aging, 1996, 17(4): 587-599. [37] Salvador R, Suckling J, Coleman M R, et al. Neurophysiological architecture of functional magnetic resonance images of human brain[J]. Cereb Cortex, 2005, 15(9): 1332-1342. [38] Toro R, Fox P T, Paus T. Functional coactivation map of the human brain[J]. Cereb Cortex, 2008, 18(11): 2553-2559. [39] Tobyne S M, Boratyn D, Johnson J A, et al. A surface-based technique for mapping homotopic interhemispheric connectivity: Development, characterization, and clinical application[R]. Wiley Online Library, 2016. [40] Josse G, Tzourio-Mazoyer N. Hemispheric specialization for language[J]. Brain Res Rev, 2004, 44(1): 1-12. [41] Durnford M, Kimura D. Right hemisphere specialization for depth perception reflected in visual feld differences[J]. Nature, 1971, 231(5302): 394-395. [42] Banich M. Hemispheric specialization and cognition[M]. Elsevier, 2009. [43] Vigneau M, Beaucousin V, Hervé P Y, et al. Meta-analyzing left hemisphere language areas: Phonology, semantics, and sentence processing[J]. Neuroimage, 2006, 30(4): 1414-1432. [44] Morillon B, Lehongre K, Frackowiak R S, et al. Neurophysiological origin of human brain asymmetry for speech and language[J]. Proc Natl Acad Sci U S A, 2010, 107(43): 18688- 18693. [45] Shulman G L, Pope D L, Astafev S V, et al. Right hemisphere dominance during spatial selective attention and target detection occurs outside the dorsal frontoparietal network[J]. J Neurosci, 2010, 30(10): 3640-3651. [46] Bartolomeo P, Thiebaut de Schotten M, Chica A B. Brain networks of visuospatial attention and their disruption in visual neglect[J]. Front Hum Neurosci, 2012, 6: 110. [47] Laftte R, Jeager M, Piscicelli C, et al. Spatial neglect encompasses impaired verticality representation after right hemisphere stroke[J]. Ann N Y Acad Sci, 2023, 1520(1): 140-152. [48] Loring D W, Meador K J. History of the Wada test[M]. 2016. [49] Conradi N, Rosenberg F, Knake S, et al. Wada test results contribute to the prediction of change in verbal learning and verbal memory function after temporal lobe epilepsy surgery [J]. Sci Rep, 2021, 11(1): 10979. [50] Gazzaniga M S. Principles of human brain organization derived from split-brain studies[J]. Neuron, 1995, 14(2): 217-228. [51] Sperry R W. Split-brain approach to learning problems[J]. The neu, 1967. [52] Zuo X N, He Y, Betzel R F, et al. Human connectomics across the life span[J]. Trends Cognit Sci, 2017, 21(1): 32-45. [53] Frahm J, Merboldt K D, Hänicke W. Functional MRI of human brain activation at high spatial resolution[J]. Magn Reson Med, 1993, 29(1): 139-144. [54] Semendeferi K, Damasio H. The brain and its main anatomical subdivisions in living hominoids using magnetic resonance imaging[J]. J Hum Evol, 2000, 38(2): 317-332. [55] Yousaf T, Dervenoulas G, Politis M. Advances in MRI methodology[J]. Int Rev Neurobiol, 2018, 141: 31-76. [56] Schnack H G, van Haren N E, Hulshoff Pol H E, et al. Reliability of brain volumes from multicenter MRI acquisition: A calibration study[J]. Hum Brain Mapp, 2004, 22(4): 312- 320. [57] Jo H J, Lee J M, Kim J H, et al. Artifcial shifting of fMRI activation localized by volume-and surface-based analyses[J]. Neuroimage, 2008, 40(3): 1077-1089. [58] Tucholka A, Fritsch V, Poline J B, et al. An empirical comparison of surface-based and volume-based group studies in neuroimaging[J]. Neuroimage, 2012, 63(3): 1443-1453. [59] Yakovlev P I, Rakic P, et al. Patterns of decussation of bulbar pyramids and distribution of pyramidal tracts on two sides of the spinal cord[J]. Trans Am Neurol Assoc, 1966, 91: 366-367. [60] Joliot M, Jobard G, Naveau M, et al. AICHA: An atlas of intrinsic connectivity of homotopic areas[J]. J Neurosci methods, 2015, 254: 46-59. [61] Yan X, Kong R, Xue A, et al. Homotopic local-global parcellation of the human cerebral cortex from resting-state functional connectivity[J]. Neuroimage, 2023, 273: 120010. [62] Labache L, Ge T, Yeo B T, et al. Language network lateralization is reflected throughout the macroscale functional organization of cortex[J]. Nat Commun, 2023, 14(1): 3405. [63] Gao L, Wang T, Qian T, et al. Severe asymptomatic carotid stenosis is associated with robust reductions in homotopic functional connectivity[J]. Neuroimage Clin, 2019, 24: 102101. [64] Karolis V R, Corbetta M, Thiebaut de Schotten M. The architecture of functional lateralisation and its relationship to callosal connectivity in the human brain[J]. Nat Commun, 2019, 10 (1): 1417. [65] Zuo X N, Xing X X. Test-retest reliabilities of resting-state fMRI measurements in human brain functional connectomics: A systems neuroscience perspective[J]. Neurosci Biobehav Rev, 2014, 45: 100-118. [66] Xing X X, Gao X, Jiang C. Individual variability of human cortical spontaneous activity by 3T/7T fMRI[J]. Neuroscience, 2023, 528: 117-128. [67] Zhao H, Cai H, Mo F, et al. Genetic mechanisms underlying brain functional homotopy: A combined transcriptome and resting-state functional MRI study[J]. Cereb Cortex, 2023, 33 (7): 3387-3400. [68] Zhang C, Jing H, Yan H, et al. Disrupted interhemispheric coordination of sensory-motor networks and insula in major depressive disorder[J]. Front Neurosci, 2023, 17: 1135337. [69] Guo Z P, Chen L, Tang L R, et al. Association between decreased interhemispheric functional connectivity of the insula and duration of illness in recurrent depression[J]. J Affect Disord, 2023, 329: 88-95. [70] Chen Q, Bi Y, Yan W, et al. Abnormal voxel-mirrored homotopic connectivity in frst-episode major depressive disorder using fMRI: A machine learning approach[J]. Front Psychiatry, 2023, 14. [71] Zhou Y, Milham M, Zuo X N, et al. Functional homotopic changes in multiple sclerosis with resting-state functional MR imaging[J]. Am J Neuroradiol, 2013, 34(6): 1180-1187. [72] Shan X, Liao R, Ou Y, et al. Increased homotopic connectivity in the prefrontal cortex modulated by olanzapine predicts therapeutic effcacy in patients with schizophrenia[J]. Neural Plast, 2021, 2021. [73] Wang P, Jiang Y, Biswal B B. Aberrant interhemispheric structural and functional connectivity within whole brain in schizophrenia[J]. Schizophr Res, 2024, 264: 336-344. [74] Tarchi L, Damiani S, Fantoni T, et al. Centrality and interhemispheric coordination are related to different clinical/behavioral factors in attention defcit/hyperactivity disorder: A restingstate fMRI study[J]. Brain Imaging Behav, 2022, 16(6): 2526-2542. [75] Cheung E Y, Shea Y, Chiu P K, et al. Diagnostic effcacy of voxel-mirrored homotopic connectivity in vascular dementia as compared to alzheimer’ s related neurodegenerative diseases —a resting state fMRI study[J]. Life, 2021, 11(10): 1108. [76] Jajcay L, Tomeček D, Horáček J, et al. Brain functional connectivity asymmetry: Left hemisphere is more modular[J]. Symmetry, 2022, 14(4): 833. [77] Margulies D S, Ghosh S S, Goulas A, et al. Situating the default-mode network along a principal gradient of macroscale cortical organization[J]. Proc Natl Acad Sci U S A, 2016, 113(44): 12574-12579. [78] Gonzalez Alam T R d J, Mckeown B L, Gao Z, et al. A tale of two gradients: Differences between the left and right hemispheres predict semantic cognition[J]. Brain Struct Funct, 2022, 227(2): 631-654. [79] Yeo B T, Krienen F M, Sepulcre J, et al. The organization of the human cerebral cortex estimated by intrinsic functional connectivity[J]. J Neurophysiol, 2011. [80] Tzourio-Mazoyer N, Joliot M, Marie D, et al. Variation in homotopic areas’ activity and inter-hemispheric intrinsic connectivity with type of language lateralization: An fMRI study of covert sentence generation in 297 healthy volunteers[J]. Brain Struct Funct, 2016, 221: 2735-2753. [81] Bradshaw A, Thompson P, Wilson A, et al. Measuring language lateralisation with different language tasks: a systematic review[J]. PeerJ, 2017, 5: e3929. [82] Flöel A, Jansen A, Deppe M, et al. Atypical hemispheric dominance for attention: Functional MRI topography[J]. J Cereb Blood Flow Metab, 2005, 25(9): 1197-1208. [83] Grefkes C, Eickhoff S B, Nowak D A, et al. Dynamic intra-and interhemispheric interactions during unilateral and bilateral hand movements assessed with fMRI and DCM[J]. Neuroimage, 2008, 41(4): 1382-1394. [84] Mancuso L, Costa T, Nani A, et al. The homotopic connectivity of the functional brain: A meta-analytic approach[J]. Sci Rep, 2019, 9(1): 3346. [85] Doron K W, Bassett D S, Gazzaniga M S. Dynamic network structure of interhemispheric coordination[J]. Proc Natl Acad Sci U S A, 2012, 109(46): 18661-18668. [86] Charalambous C C, Bowden M G, Adkins D L. Motor cortex and motor cortical interhemispheric communication in walking after stroke: The roles of transcranial magnetic stimulation and animal models in our current and future understanding[J]. Neurorehabil Neural Repair, 2016, 30(1): 94-102. [87] Andoh J, Matsushita R, Zatorre R J. Asymmetric interhemispheric transfer in the auditory network: Evidence from TMS, resting-state fMRI, and diffusion imaging[J]. J Neurosci, 2015, 35(43): 14602-14611. [88] Plow E B, Cattaneo Z, Carlson T A, et al. The compensatory dynamic of inter-hemispheric interactions in visuospatial attention revealed using rTMS and fMRI[J]. Front Hum Neurosci, 2014, 8: 226. [89] Clarke J M, Zaidel E. Anatomical-behavioral relationships: Corpus callosum morphometry and hemispheric specialization[J]. Behav Brain Res, 1994, 64(1-2): 185-202. [90] Bloom J S, Hynd G W. The role of the corpus callosum in interhemispheric transfer of information: Excitation or inhibition?[J]. Neuropsychol Rev, 2005, 15: 59-71. [91] Knyazeva M G. Splenium of corpus callosum: Patterns of interhemispheric interaction in children and adults[J]. Neural Plast, 2013. [92] Owen J P, Li Y O, Ziv E, et al. The structural connectome of the human brain in agenesis of the corpus callosum[J]. Neuroimage, 2013, 70: 340-355. [93] Yuan J, Song X, Kuan E, et al. The structural basis for interhemispheric functional connectivity: Evidence from individuals with agenesis of the corpus callosum[J]. Neuroimage Clin, 2020, 28: 102425. [94] Avelar-Pereira B, Bäckman L, Wåhlin A, et al. Increased functional homotopy of the prefrontal cortex is associated with corpus callosum degeneration and working memory decline [J]. Neurobiol Aging, 2020, 96: 68-78. [95] Suárez R, Paolino A, Fenlon L R, et al. A pan-mammalian map of interhemispheric brain connections predates the evolution of the corpus callosum[J]. Proc Natl Acad Sci U S A, 2018, 115(38): 9622-9627. [96] Fenlon L R, Suarez R, Lynton Z, et al. The evolution, formation and connectivity of the anterior commissure[J]. Semin Cell Dev Biol, 2021, 118: 50-59. [97] Bamiou D E, Sisodiya S, Musiek F E, et al. The role of the interhemispheric pathway in hearing[J]. Brain Res Rev, 2007, 56(1): 170-182. [98] Northam G B, Liegeois F, Tournier J D, et al. Interhemispheric temporal lobe connectivity predicts language impairment in adolescents born preterm[J]. Brain, 2012, 135(12): 3781- 3798. [99] Van Meer N, Houtman A C, Van Schuerbeek P, et al. Interhemispheric connections between the primary visual cortical areas via the anterior commissure in human callosal agenesis[J]. Front Syst Neurosci, 2016, 10: 101. [100] Pandya D N, Rosene D L. Some observations on trajectories and topography of commissural fbers[M]. Springer, 1985: 21-39. [101] Dong H M, Margulies D S, Zuo X N, et al. Shifting gradients of macroscale cortical organization mark the transition from childhood to adolescence[J]. Proc Natl Acad Sci U S A, 2021, 118(28): e2024448118. [102] Gogtay N, Giedd J N, Lusk L, et al. Dynamic mapping of human cortical development during childhood through early adulthood[J]. Proc Natl Acad Sci U S A, 2004, 101(21): 8174-8179. [103] Blakemore S J, Mills K L. Is adolescence a sensitive period for sociocultural processing?[J]. Annu Rev Psychol, 2014, 65: 187-207. [104] Huttenlocher P R. Morphometric study of human cerebral cortex development[J]. Neuropsychologia, 1990, 28(6): 517-527. [105] Travis K, Ford K, Jacobs B. Regional dendritic variation in neonatal human cortex: A quantitative golgi study[J]. Dev Neurosci, 2005, 27(5): 277-287. [106] De León Reyes N S, Bragg-Gonzalo L, Nieto M. Development and plasticity of the corpus callosum[J]. Development, 2020, 147(18): dev189738. [107] Hervé P Y, Zago L, Petit L, et al. Revisiting human hemispheric specialization with neuroimaging[J]. Trends Cognit Sci, 2013, 17(2): 69-80. [108] Smyser C D, Snyder A Z, Neil J J. Functional connectivity MRI in infants: Exploration of the functional organization of the developing brain[J]. Neuroimage, 2011, 56(3): 1437-1452. [109] Perani D, Saccuman M C, Scifo P, et al. Neural language networks at birth[J]. Proc Natl Acad Sci U S A, 2011, 108(38): 16056-16061. [110] Friederici A D, Brauer J, Lohmann G. Maturation of the language network: From inter-to intrahemispheric connectivities[J]. PLoS One, 2011, 6(6): e20726. [111] Lidzba K, Schwilling E, Grodd W, et al. Language comprehension vs. language production: Age effects on fMRI activation[J]. Brain Lang, 2011, 119(1): 6-15. [112] Groen M A, Whitehouse A J, Badcock N A, et al. Does cerebral lateralization develop? A study using functional transcranial doppler ultrasound assessing lateralization for language production and visuospatial memory[J]. Brain Behav, 2012, 2(3): 256-269. [113] Eyler L T, Pierce K, Courchesne E. A failure of left temporal cortex to specialize for language is an early emerging and fundamental property of autism[J]. Brain, 2012, 135(3): 949-960. [114] Lee F S, Heimer H, Giedd J N, et al. Adolescent mental health—opportunity and obligation [J]. Science, 2014, 346(6209): 547-549. [115] Paus T, Keshavan M, Giedd J N. Why do many psychiatric disorders emerge during adolescence?[J]. Nat Rev Neurosci, 2008, 9(12): 947-957. [116] Gogtay N, Vyas N S, Testa R, et al. Age of onset of schizophrenia: Perspectives from structural neuroimaging studies[J]. Schizophr Bull, 2011, 37(3): 504-513. [117] Crow T, Done D, Sacker A. Cerebral lateralization is delayed in children who later develop schizophrenia[J]. Schizophr Res, 1996, 22(3): 181-185. [118] Crow T J. Is schizophrenia the price that homo sapiens pays for language?[J]. Schizophr Res, 1997, 28(2-3): 127-141. [119] Milham M, Petkov C I, Margulies D S, et al. Accelerating the evolution of nonhuman primate neuroimaging[J]. Neuron, 2020, 105(4): 600-603. [120] Głodek J, Adamiak Z, Przeworski A. Magnetic resonance imaging of reptiles, rodents, and lagomorphs for clinical diagnosis and animal research[J]. Comp Med, 2016, 66(3): 216-219. [121] Hoyer C, Gass N, Weber-Fahr W, et al. Advantages and challenges of small animal magnetic resonance imaging as a translational tool[J]. Neuropsychobiology, 2014, 69(4): 187-201. [122] Markicevic M, Savvateev I, Grimm C, et al. Emerging imaging methods to study whole-brain function in rodent models[J]. Transl Psychiatry, 2021, 11(1): 457. [123] Rilling J K. Comparative primate neuroimaging: Insights into human brain evolution[J]. Trends Cognit Sci, 2014, 18(1): 46-55. [124] de Schotten M T, Croxson P L, Mars R B. Large-scale comparative neuroimaging: Where are we and what do we need?[J]. Cortex, 2019, 118: 188-202. [125] Council N R. International animal research regulations: Impact on neuroscience research: workshop summary[M]. National Academies Press, 2012. [126] Ferguson J N, Aldag J M, Insel T R, et al. Oxytocin in the medial amygdala is essential for social recognition in the mouse[J]. J Neurosci, 2001, 21(20): 8278-8285. [127] Ferretti V, Maltese F, Contarini G, et al. Oxytocin signaling in the central amygdala modulates emotion discrimination in mice[J]. Curr Biol, 2019, 29(12): 1938-1953. [128] Hafting T, Fyhn M, Molden S, et al. Microstructure of a spatial map in the entorhinal cortex [J]. Nature, 2005, 436(7052): 801-806. [129] Ellenbroek B, Youn J. Rodent models in neuroscience research: Is it a rat race?[J]. Dis Models Mech, 2016, 9(10): 1079-1087. [130] Denic A, Macura S I, Mishra P, et al. MRI in rodent models of brain disorders[J]. Neurotherapeutics, 2011, 8: 3-18. [131] Hsu L M, Liang X, Gu H, et al. Constituents and functional implications of the rat default mode network[J]. Proc Natl Acad Sci U S A, 2016, 113(31): 4541-4547. [132] Xu N, LaGrow T J, Anumba N, et al. Functional connectivity of the brain across rodents and humans[J]. Front Neurosci, 2022, 16: 816331. [133] Ma Z, Perez P, Ma Z, et al. Functional atlas of the awake rat brain: A neuroimaging study of rat brain specialization and integration[J]. Neuroimage, 2018, 170: 95-112. [134] Passingham R. How good is the macaque monkey model of the human brain?[J]. Curr Opin Neurobiol, 2009, 19(1): 6-11. [135] Gray D T, Barnes C A. Experiments in macaque monkeys provide critical insights into ageassociated changes in cognitive and sensory function[J]. Proc Natl Acad Sci U S A, 2019, 116(52): 26247-26254. [136] Goulas A, Bastiani M, Bezgin G, et al. Comparative analysis of the macroscale structural connectivity in the macaque and human brain[J]. PLoS Comput Biol, 2014, 10(3): e1003529. [137] Van Essen D C, Dierker D L. Surface-based and probabilistic atlases of primate cerebral cortex[J]. Neuron, 2007, 56(2): 209-225. [138] Gil-da Costa R, Martin A, Lopes M A, et al. Species-specifc calls activate homologs of Broca’s and Wernicke’s areas in the macaque[J]. Nat Neurosci, 2006, 9(8): 1064-1070. [139] Kojima T, Onoe H, Hikosaka K, et al. Default mode of brain activity demonstrated by positron emission tomography imaging in awake monkeys: Higher rest-related than working memoryrelated activity in medial cortical areas[J]. J Neurosci, 2009, 29(46): 14463-14471. [140] O’ Reilly J X, Croxson P L, Jbabdi S, et al. Causal effect of disconnection lesions on interhemispheric functional connectivity in rhesus monkeys[J]. Proc Natl Acad Sci U S A, 2013, 110(34): 13982-13987. [141] Demeter S, Rosene D L, Van Hoesen G W. Fields of origin and pathways of the interhemispheric commissures in the temporal lobe of macaques[J]. J Comp Neurol, 1990, 302(1): 29-53. [142] Leca J B, Gunst N, Huffman M A. Principles and levels of laterality in unimanual and bimanual stone handling patterns by japanese macaques[J]. J Hum Evol, 2010, 58(2): 155-165. [143] Lanz F, Moret V, Ambett R, et al. Distant heterotopic callosal connections to premotor cortex in non-human primates[J]. Neuroscience, 2017, 344: 56-66. [144] Kagan I, Iyer A, Lindner A, et al. Space representation for eye movements is more contralateral in monkeys than in humans[J]. Proc Natl Acad Sci U S A, 2010, 107(17): 7933-7938. [145] Hutchison R M, Leung L S, Mirsattari S M, et al. Resting-state networks in the macaque at 7T[J]. Neuroimage, 2011, 56(3): 1546-1555. [146] Andersen P. The hippocampus book[M]. Oxford university press, 2007. [147] White B R, Bauer A Q, Snyder A Z, et al. Imaging of functional connectivity in the mouse brain[J]. PLoS One, 2011, 6(1): e16322. [148] Straathof M, Sinke M R, Roelofs T J, et al. Distinct structure-function relationships across cortical regions and connectivity scales in the rat brain[J]. Sci Rep, 2020, 10(1): 56. [149] Rogers L J. Hand and paw preferences in relation to the lateralized brain[J]. Philos Trans R Soc Lond B Biol Sci, 2009, 364(1519): 943-954. [150] Manns M, El Basbasse Y, Freund N, et al. Paw preferences in mice and rats: Meta-analysis [J]. Neurosci Biobehav Rev, 2021, 127: 593-606. [151] Hakon J, Quattromani M J, Sjölund C, et al. Multisensory stimulation improves functional recovery and resting-state functional connectivity in the mouse brain after stroke[J]. Neuroimage Clin, 2018, 17: 717-730. [152] Walker S. Lateralization of functions in the vertebrate brain: A review[J]. Br J Psychol, 1980, 71(3): 329-367. [153] Jordan J T. The rodent hippocampus as a bilateral structure: A review of hemispheric lateralization[J]. Hippocampus, 2020, 30(3): 278-292. [154] Szczupak D, Iack P M, Rayêe D, et al. The relevance of heterotopic callosal fbers to interhemispheric connectivity of the mammalian brain[J]. Cereb Cortex, 2023, 33(8): 4752-4760. [155] Bürgel U, Amunts K, Hoemke L, et al. White matter fber tracts of the human brain: Threedimensional mapping at microscopic resolution, topography and intersubject variability[J]. Neuroimage, 2006, 29(4): 1092-1105. [156] Sporns O, Tononi G, Kötter R. The human connectome: A structural description of the human brain[J]. PLoS Comput Biol, 2005, 1(4): e42. [157] Sydnor V J, Larsen B, Seidlitz J, et al. Intrinsic activity development unfolds along a sensorimotor–association cortical axis in youth[J]. Nat Neurosci, 2023, 26(4): 638-649. [158] Kraemer H C, Yesavage J A, Taylor J L, et al. How can we learn about developmental processes from cross-sectional studies, or can we?[J]. Am J Psychiatry, 2000, 157(2): 163-171. [159] Bethlehem R A, Seidlitz J, White S R, et al. Brain charts for the human lifespan[J]. Nature, 2022, 604(7906): 525-533. [160] Toga A W, Thompson P M, Sowell E R. Mapping brain maturation[J]. Trends Neurosci, 2006, 29(3): 148-159. [161] Lepage C, Wagstyl K, Jung B, et al. Civet-macaque: An automated pipeline for MRI-based cortical surface generation and cortical thickness in macaques[J]. Neuroimage, 2021, 227: 117622. [162] Desrosiers-Gregoire G, Devenyi G A, Grandjean J, et al. Rodent automated bold improvement of EPI Sequences (RABIES): A standardized image processing and data quality platform for rodent fMRI.[J]. bioRxiv, 2022: 2022-08. [163] Barrière D, Magalhães R, Novais A, et al. The SIGMA rat brain templates and atlases for multimodal MRI data analysis and visualization[J]. Nat Commun, 2019, 10(1): 5699. [164] Hsu L M, Wang S, Ranadive P, et al. Automatic skull stripping of rat and mouse brain MRI data using U-Net[J]. Front Neurosci, 2020, 14: 568614. [165] Goulas A, Betzel R F, Hilgetag C C. Spatiotemporal ontogeny of brain wiring[J]. Sci Adv, 2019, 5(6): eaav9694. [166] Kong R, Yang Q, Gordon E, et al. Individual-specifc areal-level parcellations improve functional connectivity prediction of behavior[J]. Cereb Cortex, 2021, 31(10): 4477-4500. [167] Schaefer A, Kong R, Gordon E M, et al. Local-global parcellation of the human cerebral cortex from intrinsic functional connectivity MRI[J]. Cereb Cortex, 2018, 28(9): 3095-3114. [168] Huntenburg J M, Bazin P L, Margulies D S. Large-scale gradients in human cortical organization[J]. Trends Cognit Sci, 2018, 22(1): 21-31. [169] Barch D M, Burgess G C, Harms M P, et al. Function in the human connectome: Task-fMRI and individual differences in behavior[J]. Neuroimage, 2013, 80: 169-189. [170] Glasser M F, Sotiropoulos S N, Wilson J A, et al. The minimal preprocessing pipelines for the Human Connectome Project[J]. Neuroimage, 2013, 80: 105-124. [171] Smith S M, Hyvärinen A, Varoquaux G, et al. Group-PCA for very large fMRI datasets[J]. Neuroimage, 2014, 101: 738-749. [172] Xu T, Kiar G, Cho J W, et al. ReX: An integrative tool for quantifying and optimizing measurement reliability for the study of individual differences[J]. Nature Methods, 2023: 1-4. [173] Zuo X N, Xu T, Milham M P. Harnessing reliability for neuroscience research[J]. Nat Hum Behav, 2019, 3(8): 768-771. [174] Jiang C, He Y, Betzel R F, et al. Optimizing network neuroscience computation of individual differences in human spontaneous brain activity for test-retest reliability[J]. Network Neurosci, 2023, 7(3): 1080-1108. [175] Binder J R, Gross W L, Allendorfer J B, et al. Mapping anterior temporal lobe language areas with fMRI: A multicenter normative study[J]. Neuroimage, 2011, 54(2): 1465-1475. [176] Castelli F, Happé F, Frith U, et al. Movement and mind: A functional imaging study of perception and interpretation of complex intentional movement patterns[M]. Psychology Press, 2013: 155-169. [177] Wheatley T, Milleville S C, Martin A. Understanding animate agents: Distinct roles for the social network and mirror system[J]. Psychol Sci, 2007, 18(6): 469-474. [178] Xu T, Nenning K H, Schwartz E, et al. Cross-species functional alignment reveals evolutionary hierarchy within the connectome[J]. Neuroimage, 2020, 223: 117346. [179] Fox P T, Lancaster J L. Mapping context and content: The BrainMap model[J]. Nat Rev Neurosci, 2002, 3(4): 319-321. [180] Lancaster J L, Laird A R, Eickhoff S B, et al. Automated regional behavioral analysis for human brain images[J]. Front Neuroinf, 2012, 6: 23. [181] Landis J R, Koch G G. The measurement of observer agreement for categorical data[J]. Biometrics, 1977: 159-174. [182] Poldrack R A, Baker C I, Durnez J, et al. Scanning the horizon: Towards transparent and reproducible neuroimaging research[J]. Nat Rev Neurosci, 2017, 18(2): 115-126. [183] Button K S, Ioannidis J P, Mokrysz C, et al. Power failure: Why small sample size undermines the reliability of neuroscience[J]. Nat Rev Neurosci, 2013, 14(5): 365-376. [184] Noble S, Scheinost D, Constable R T. A decade of test-retest reliability of functional connectivity: A systematic review and meta-analysis[J]. Neuroimage, 2019, 203: 116157. [185] Liao X H, Xia M R, Xu T, et al. Functional brain hubs and their test–retest reliability: A multiband resting-state functional MRI study[J]. Neuroimage, 2013, 83: 969-982. [186] Ren Y, Nguyen V T, Guo L, et al. Inter-subject functional correlation reveal a hierarchical organization of extrinsic and intrinsic systems in the brain[J]. Sci Rep, 2017, 7(1): 10876. [187] Postema M C, De Marco M, Colato E, et al. A study of within-subject reliability of the brain’ s default-mode network[J]. Magn Reson Mater Phys, Biol Med, 2019, 32: 391-405. [188] Braga R M, Buckner R L. Parallel interdigitated distributed networks within the individual estimated by intrinsic functional connectivity[J]. Neuron, 2017, 95(2): 457-471. [189] Zhang J, Zhuang L, Jiang J, et al. Brain fngerprints along the language hierarchy[J]. Front Hum Neurosci, 2022, 16: 982905. [190] Birn R M, Molloy E K, Patriat R, et al. The effect of scan length on the reliability of restingstate fMRI connectivity estimates[J]. Neuroimage, 2013, 83: 550-558. [191] Hong S J, Xu T, Nikolaidis A, et al. Toward a connectivity gradient-based framework for reproducible biomarker discovery[J]. Neuroimage, 2020, 223: 117322. [192] Bernhardt B C, Smallwood J, Keilholz S, et al. Gradients in brain organization[J]. Neuroimage, 2022, 251: 118987. [193] De Kovel C G, Lisgo S N, Fisher S E, et al. Subtle left-right asymmetry of gene expression profles in embryonic and foetal human brains[J]. Sci Rep, 2018, 8(1): 12606. [194] Karlebach G, Francks C. Lateralization of gene expression in human language cortex[J]. Cortex, 2015, 67: 30-36. [195] Hartwigsen G, Bengio Y, Bzdok D. How does hemispheric specialization contribute to human-defning cognition?[J]. Neuron, 2021, 109(13): 2075-2090. [196] Kernbach J M, Yeo B T, Smallwood J, et al. Subspecialization within default mode nodes characterized in 10,000 UK Biobank participants[J]. Proc Natl Acad Sci U S A, 2018, 115 (48): 12295-12300. [197] Cheng L, Zhang Y, Li G, et al. Connectional asymmetry of the inferior parietal lobule shapes hemispheric specialization in humans, chimpanzees, and rhesus macaques[J]. eLife, 2021, 10: e67600. [198] Numssen O, Bzdok D, Hartwigsen G. Functional specialization within the inferior parietal lobes across cognitive domains[J]. eLife, 2021, 10: e63591. [199] Hollins M. Somesthetic senses[J]. Annu Rev Psychol, 2010, 61: 243-271. [200] Suo X, Ding H, Li X, et al. Anatomical and functional coupling between the dorsal and ventral attention networks[J]. Neuroimage, 2021, 232: 117868. [201] Rajimehr R, Firoozi A, Rafpoor H, et al. Complementary hemispheric lateralization of language and social processing in the human brain[J]. Cell Rep, 2022, 41(6). [202] Varnum M E, Grossmann I, Kitayama S, et al. The origin of cultural differences in cognition: The social orientation hypothesis[J]. Curr Dir Psychol Sci, 2010, 19(1): 9-13. [203] Campbell-Phillips S, Halder D P, Campbell S, et al. Cross cultural differences in cognition: A study on how culture affects the way we think[J]. Siasat J, 2020, 5(3): 9-15. [204] Ngan Ng S S, Rao N. Chinese number words, culture, and mathematics learning[J]. Rev Educ Res, 2010, 80(2): 180-206. [205] Huntsinger C S, Jose P E, Liaw F R, et al. Cultural differences in early mathematics learning: A comparison of euro-american, chinese-american, and taiwan-chinese families[J]. Int J Behav, 1997, 21(2): 371-388. [206] Uludağ K, Roebroeck A. General overview on the merits of multimodal neuroimaging data fusion[J]. Neuroimage, 2014, 102: 3-10. [207] Zhou X, Lin Q, Gui Y, et al. Multimodal mr images-based diagnosis of early adolescent attention-defcit/hyperactivity disorder using multiple kernel learning[J]. Front Neurosci, 2021, 15: 710133. [208] Nieuwenhuys R, Voogd J, Van Huizen C. Telencephalon: Neocortex[M]. 2008: 491-680. [209] Noback C R, Ruggiero D A, Strominger N L, et al. The human nervous system: Structure and function[M]. Springer Science & Business Media, 2005. [210] Wagstyl K, Larocque S, Cucurull G, et al. BigBrain 3D atlas of cortical layers: Cortical and laminar thickness gradients diverge in sensory and motor cortices[J]. PLoS Biol, 2020, 18 (4): e3000678. [211] Saberi A, Paquola C, Wagstyl K, et al. The regional variation of laminar thickness in the human isocortex is related to cortical hierarchy and interregional connectivity[J]. PLoS Biol, 2023, 21(11): e3002365. [212] Anderson C T, Sheets P L, Kiritani T, et al. Sublayer-specifc microcircuits of corticospinal and corticostriatal neurons in motor cortex[J]. Nat Neurosci, 2010, 13(6): 739-744. [213] Purves D, George A, David F, et al. Neuroscience, fourth edition[M]. Sinauer Associates, Inc., 2008. [214] Shine J M. Neuromodulatory influences on integration and segregation in the brain[J]. Trends Cognit Sci, 2019, 23(7): 572-583. [215] Vizi E S, Lajtha A. Handbook of neurochemistry and molecular neurobiology: Neurotransmitter systems[M]. Springer Science & Business Media, 2008. [216] Hansen J Y, Shafei G, Markello R D, et al. Mapping neurotransmitter systems to the structural and functional organization of the human neocortex[J]. Nat Neurosci, 2022, 25(11): 1569- 1581. [217] Markello R D, Arnatkeviciute A, Poline J B, et al. Standardizing workflows in imaging transcriptomics with the abagen toolbox[J]. eLife, 2021, 10: e72129. [218] Hansen J Y, Markello R D, Vogel J W, et al. Mapping gene transcription and neurocognition across human neocortex[J]. Nat Hum Behav, 2021, 5(9): 1240-1250. [219] Zheng Y Q, Zhang Y, Yau Y, et al. Local vulnerability and global connectivity jointly shape neurodegenerative disease propagation[J]. PLoS Biol, 2019, 17(11): e3000495. [220] Hawrylycz M J, Lein E S, Guillozet-Bongaarts A L, et al. An anatomically comprehensive atlas of the adult human brain transcriptome[J]. Nature, 2012, 489(7416): 391-399. [221] Glasser M F, Smith S M, Marcus D S, et al. The Human Connectome Project’s neuroimaging approach[J]. Nat Neurosci, 2016, 19(9): 1175-1187. [222] Glasser M F, Van Essen D C. Mapping human cortical areas in vivo based on myelin content as revealed by T1-and T2-weighted MRI[J]. J Neurosci, 2011, 31(32): 11597-11616. [223] Fischl B, Dale A M. Measuring the thickness of the human cerebral cortex from magnetic resonance images[J]. Proc Natl Acad Sci U S A, 2000, 97(20): 11050-11055. [224] Burt J B, Demirtaş M, Eckner W J, et al. Hierarchy of transcriptomic specialization across human cortex captured by structural neuroimaging topography[J]. Nat Neurosci, 2018, 21(9): 1251-1259. [225] Markello R D, Hansen J Y, Liu Z Q, et al. Neuromaps: Structural and functional interpretation of brain maps[J]. Nat Methods, 2022, 19(11): 1472-1479. [226] Amunts K, Lepage C, Borgeat L, et al. BigBrain: An ultrahigh-resolution 3D human brain model[J]. Science, 2013, 340(6139): 1472-1475. [227] Paquola C, Royer J, Lewis L B, et al. The BigBrainWarp toolbox for integration of BigBrain 3D histology with multimodal neuroimaging[J]. eLife, 2021, 10: e70119. [228] Kaller S, Rullmann M, Luthardt J, et al. Measurements of dopamine D1-type receptors using simultaneous PET-MRI scanner: Study on test-retest reliability[M]. Soc Nuclear Med, 2016. [229] Smith C T, Crawford J L, Dang L C, et al. Partial-volume correction increases estimated dopamine D2-like receptor binding potential and reduces adult age differences[J]. J Cereb Blood Flow Metab, 2019, 39(5): 822-833. [230] Sandiego C M, Gallezot J D, Lim K, et al. Reference region modeling approaches for amphetamine challenge studies with [11C] FLB 457 and PET[J]. J Cereb Blood Flow Metab, 2015, 35(4): 623-629. [231] Zakiniaeiz Y, Hillmer A T, Matuskey D, et al. Sex differences in amphetamine-induced dopamine release in the dorsolateral prefrontal cortex of tobacco smokers[J]. Neuropsychopharmacology, 2019, 44(13): 2205-2211. [232] Slifstein M, van de Giessen E, Van Snellenberg J, et al. Defcits in prefrontal cortical and extrastriatal dopamine release in schizophrenia: A positron emission tomographic functional magnetic resonance imaging study[J]. JAMA psychiatry, 2015, 72(4): 316-324. [233] Sandiego C M, Matuskey D, Lavery M, et al. The effect of treatment with guanfacine, an Alpha2 adrenergic agonist, on dopaminergic tone in tobacco smokers: An [11C] FLB457 PET study[J]. Neuropsychopharmacology, 2018, 43(5): 1052-1058. [234] Dukart J, Holiga Š, Chatham C, et al. Cerebral blood flow predicts differential neurotransmitter activity[J]. Sci Rep, 2018, 8(1): 4074. [235] Ding Y S, Singhal T, Planeta-Wilson B, et al. PET imaging of the effects of age and cocaine on the norepinephrine transporter in the human brain using (S, S)-[11C] O-methylreboxetine and HRRT[J]. Synapse, 2010, 64(1): 30-38. [236] Chiang-shan R L, Potenza M N, Lee D E, et al. Decreased norepinephrine transporter availability in obesity: Positron emission tomography imaging with (S, S)-[11C] Omethylreboxetine[J]. Neuroimage, 2014, 86: 306-310. [237] Sanchez-Rangel E, Gallezot J D, Yeckel C W, et al. Norepinephrine transporter availability in brown fat is reduced in obesity: A human PET study with [11C] MRB[J]. Int J Obes, 2020, 44(4): 964-967. [238] Belfort-DeAguiar R, Gallezot J D, Hwang J J, et al. Noradrenergic activity in the human brain: A mechanism supporting the defense against hypoglycemia[J]. J Clin Endocrinol Metab, 2018, 103(6): 2244-2252. [239] Savli M, Bauer A, Mitterhauser M, et al. Normative database of the serotonergic system in healthy subjects using multi-tracer PET[J]. Neuroimage, 2012, 63(1): 447-459. [240] Gallezot J D, Nabulsi N, Neumeister A, et al. Kinetic modeling of the serotonin 5-HT1B receptor radioligand [11C] P943 in humans[J]. J Cereb Blood Flow Metab, 2010, 30(1): 196-210. [241] Murrough J W, Czermak C, Henry S, et al. The effect of early trauma exposure on serotonin type 1B receptor expression revealed by reduced selective radioligand binding[J]. Arch Gen Psychiatry, 2011, 68(9): 892-900. [242] Murrough J W, Henry S, Hu J, et al. Reduced ventral striatal/ventral pallidal serotonin 1B receptor binding potential in major depressive disorder[J]. Psychopharmacology, 2011, 213: 547-553. [243] Matuskey D, Bhagwagar Z, Planeta B, et al. Reductions in brain 5-HT1B receptor availability in primarily cocaine-dependent humans[J]. Biol Psychiatry, 2014, 76(10): 816-822. [244] Pittenger C, Adams Jr T G, Gallezot J D, et al. OCD is associated with an altered association between sensorimotor gating and cortical and subcortical 5-HT1b receptor binding[J]. J Affect Disord, 2016, 196: 87-96. [245] Baldassarri S R, Park E, Finnema S J, et al. Inverse changes in raphe and cortical 5-HT1B receptor availability after acute tryptophan depletion in healthy human subjects[J]. Synapse, 2020, 74(10): e22159. [246] Saricicek A, Chen J, Planeta B, et al. Test–retest reliability of the novel 5-HT 1B receptor PET radioligand [11 C] p943[J]. Eur J Nucl Med Mol Imaging, 2015, 42: 468-477. [247] Beliveau V, Ganz M, Feng L, et al. A high-resolution in vivo atlas of the human brain’s serotonin system[J]. J Neurosci, 2017, 37(1): 120-128. [248] Radhakrishnan R, Nabulsi N, Gaiser E, et al. Age-related change in 5-HT6 receptor availability in healthy male volunteers measured with 11C-GSK215083 PET[J]. J Nucl Med, 2018, 59(9): 1445-1450. [249] Radhakrishnan R, Matuskey D, Nabulsi N, et al. In vivo 5-HT6 and 5-HT2a receptor availability in antipsychotic treated schizophrenia patients vs. unmedicated healthy humans measured with [11C] GSK215083 PET[J]. Psychiatry Res: Neuroimaging, 2020, 295: 111007. [250] Baldassarri S R, Hillmer A T, Anderson J M, et al. Use of electronic cigarettes leads to signifcant beta2-nicotinic acetylcholine receptor occupancy: Evidence from a PET imaging study[J]. Nicotine Tob Res, 2018, 20(4): 425-433. [251] Hillmer A T, Esterlis I, Gallezot D, et al. Imaging of cerebral a4p2* nicotinic acetylcholinereceptors with (-)-[18F] Flubatine PET: Implementation of bolus plus constant infusion andsensitivity to acetylcholine in human brain(J]. Neuroimage, 2016, 141: 71-80. [252] Naganawa M, Nabulsi N, Henry S, et al. First-in-human assessment of 11C-LSN3172176, an M1 muscarinic acetylcholine receptor PET radiotracer[J]. J Nucl Med, 2021, 62(4): 553-560. [253] Aghourian M, Legault-Denis C, Soucy J, et al. Quantifcation of brain cholinergic denervation in Alzheimer’ s disease using PET imaging with [18F]-FEOBV[J]. Mol Psychiatry, 2017, 22 (11): 1531-1538. [254] Bedard M A, Aghourian M, Legault-Denis C, et al. Brain cholinergic alterations in idiopathic rem sleep behaviour disorder: A PET imaging study with 18F-FEOBV[J]. Sleep Med, 2019, 58: 35-41. [255] Galovic M, Erlandsson K, Fryer T D, et al. Validation of a combined image derived input function and venous sampling approach for the quantifcation of [18F] GE-179 PET binding in the brain[J]. Neuroimage, 2021, 237: 118194. [256] Galovic M, Al-Diwani A, Vivekananda U, et al. In vivo NMDA receptor function in people with NMDA receptor antibody encephalitis[J]. medRxiv, 2021: 2021-12. [257] McGinnity C J, Hammers A, Barros D A R, et al. Initial evaluation of 18F-GE-179, a putative PET tracer for activated N-methyl D-aspartate receptors[J]. J Nucl Med, 2014, 55(3): 423- 430. [258] Smart K, Cox S M, Scala S G, et al. Sex differences in [11 C] ABP688 binding: A positron emission tomography study of mGlu5 receptors[J]. Eur J Nucl Med Mol Imaging, 2019, 46: 1179-1183. [259] DuBois J M, Rousset O G, Rowley J, et al. Characterization of age/sex and the regional distribution of mglur5 availability in the healthy human brain measured by high-resolution [11 C] ABP688 PET[J]. Eur J Nucl Med Mol Imaging, 2016, 43: 152-162. [260] Nørgaard M, Beliveau V, Ganz M, et al. A high-resolution in vivo atlas of the human brain’s benzodiazepine binding site of GABAa receptors[J]. Neuroimage, 2021, 232: 117878. [261] Gallezot J D, Planeta B, Nabulsi N, et al. Determination of receptor occupancy in the presence of mass dose:[11C] GSK189254 PET imaging of histamine H3 receptor occupancy by PF- 03654746[J]. J Cereb Blood Flow Metab, 2017, 37(3): 1095-1107. [262] Normandin M D, Zheng M Q, Lin K S, et al. Imaging the cannabinoid CB1 receptor in humans with [11C] OMAR: Assessment of kinetic analysis methods, test–retest reproducibility, and gender differences[J]. J Cereb Blood Flow Metab, 2015, 35(8): 1313-1322. [263] Neumeister A, Normandin M D, Murrough J W, et al. Positron emission tomography shows elevated cannabinoid CB1 receptor binding in men with alcohol dependence[J]. Alcohol: Clin Exp Res, 2012, 36(12): 2104-2109. [264] D’ Souza D C, Cortes-Briones J A, Ranganathan M, et al. Rapid changes in cannabinoid 1 receptor availability in cannabis-dependent male subjects after abstinence from cannabis[J]. Biol Psychiatry: Cognit Neurosci Neuroimaging, 2016, 1(1): 60-67. [265] Ranganathan M, Cortes-Briones J, Radhakrishnan R, et al. Reduced brain cannabinoid receptor availability in schizophrenia[J]. Biol Psychiatry, 2016, 79(12): 997-1005. [266] Kantonen T, Karjalainen T, Isojärvi J, et al. Interindividual variability and lateralization of μ-opioid receptors in the human brain[J]. Neuroimage, 2020, 217: 116922. [267] Hawrylycz M, Miller J A, Menon V, et al. Canonical genetic signatures of the adult humanbrain[J]. Nat Neurosci, 2015, 18(12): 1832-1844. [268] Chopra S, Shaw M, Shaw T, et al. More highly myelinated white matter tracts are associated with faster processing speed in healthy adults[J]. Neuroimage, 2018, 171: 332-340. [269] Moore S, Meschkat M, Ruhwedel T, et al. A role of oligodendrocytes in information processing[J]. Nat Commun, 2020, 11(1): 5497. [270] Gordon EM, Chauvin RJ, Van A N, et al. A somato-cognitive action network alternates with effector regions in motor cortex[J]. Nature, 2023: 1-9. [271] Ku R Y, Torii M. New molecular players in the development of callosal projections[J]. Cells,2020, 10(1): 29. [272] Ozaki H S, Wahlsten D. Prenatal formation of the normal mouse corpus callosum: A quantitative study with carbocyanine dyes[JJ. J Comp Neurol, 1992, 323(1): 81-90. [273] Molyneaux B J, Arlotta P, Menezes J R, et al. Neuronal subtype specification in the cerebralcortex[J]. Nat Rev Neurosci, 2007, 8(6): 427-437. [274]Yang J, Huber L, Yu Y, et al. Linking cortical circuit models to human cognition with laminarfMRI[J]. Neurosci Biobehav Rev, 2021, 128: 467-478. [275] Iversen L. Neurotransmitter transporters and their impact on the development of psychopharmacology[J]. British journal of pharmacology, 2006, 147(S1): S82-S88. [276]Goulas A, Changeux J P, Wagstyl K, et al. The natural axis of transmitter receptor distribution, in the human cerebral cortex[J]. Proc Natl Acad Sci US A, 2021, 118(3): e2020574118. [277] Du Y, Yu K, Yan C, et al. The contributions of Mu-opioid receptors on glutamatergic and GABAergic neurons to analgesia induced by various stress intensities[J]. Eneuro, 2022, 9(3). [278] Willoch F, Schindler F, Wester HJ, et al. Central poststroke pain and reduced opioid receptor binding within pain processing circuitries: A [11C] diprenorphine PET study[J]. Pain, 2004,108(3): 213-220. [279] Maarrawi J, Peyron R, Mertens P, et al. Differential brain opioid receptor availability in central and peripheral neuropathic pain[J]. Pain, 2007, 127(1-2): 183-194. [280] Charnay Y, Léger L. Brain serotonergic circuitries[J]. Dialogues Clin Neurosci, 2010, 12(4): 471-487. [281] Fone KC. An update on the role of the 5-hydroxytryptamine6 receptor in cognitive function[J]. Neuropharmacology, 2008, 55(6): 1015-1022. [282] Codony X, Vela J M, Ramírez MJ. 5-HT6 receptor and cognition[J]. Curr Opin Pharmacol,2011, 11(1): 94-100. [283] Dong H M, Zhang XH, Labache L, et al. Attention network drives cortical maturation linkedto childhood cognition[J]. bioRxiv, 2022: 2022-04. [284] Tzourio-Mazoyer N. Intra-and inter-hemispheric connectivity supporting hemispheric specialization[M]. Springer, 2016: 129-146. [285] Dong H M, Castellanos F X, Yang N, et al. Charting brain growth in tandem with brain templates at school age[J]. Sci Bull, 2020, 65(22): 1924-1934. [286] Shaw P, Greenstein D, Lerch J, et al. Intellectual ability and cortical development in children and adolescents[J]. Nature, 2006, 440(7084): 676-679. [287] Román F J, Morillo D, Estrada E, et al. Brain-intelligence relationships across childhood and adolescence: A latent-variable approach[J]. Intelligence, 2018, 68: 21-29. [288] Xu T, Yang Z, Jiang L, et al. A connectome computation system for discovery science of brain [J]. Sci Bull, 2015, 60(1): 86-95. [289] Xing X X, Xu T, Jiang C, et al. Connectome computation system: 2015–2021 updates[J]. Sci Bull, 2022, 67(5): 448-451. [290] Fischl B. Freesurfer[J]. Neuroimage, 2012, 62(2): 774-781. [291] Cox R W. AFNI: Software for analysis and visualization of functional magnetic resonance neuroimages[J]. Comput Biomed Res, 1996, 29(3): 162-173. [292] Jenkinson M, Beckmann C F, Behrens T E, et al. FSL[J]. Neuroimage, 2012, 62(2): 782-790. [293] Wang X, Li X H, Cho J W, et al. U-net model for brain extraction: Trained on humans for transfer to non-human primates[J]. Neuroimage, 2021, 235: 118001. [294] Greve D N, Fischl B. Accurate and robust brain image alignment using boundary-based registration[J]. Neuroimage, 2009, 48(1): 63-72. [295] Pruim R H, Mennes M, van Rooij D, et al. ICA-AROMA: A robust ICA-based strategy for removing motion artifacts from fMRI data[J]. Neuroimage, 2015, 112: 267-277. [296] Dickie E W, Anticevic A, Smith D E, et al. Ciftify: A framework for surface-based analysis of legacy mr acquisitions[J]. Neuroimage, 2019, 197: 818-826. [297] Zuur A F, Ieno E N, Walker N J, et al. Mixed effects models and extensions in ecology with R: volume 574[M]. Springer, 2009. [298] Wechsler D. Wechsler intelligence scale for children–Fourth Edition (WISC-IV)[M]. 2003. [299] 张厚粲. 韦氏儿童智力量表第四版 (WISC-IV) 中文版的修订[J]. 心理科学, 2009(5): 3. [300] 张喆. 儿童青少年智力与皮层发展关联研究[D]. 中国科学院大学, 2019. [301] Harms M P, Somerville L H, Ances B M, et al. Extending the Human Connectome Project across ages: Imaging protocols for the lifespan development and aging projects[J]. Neuroimage, 2018, 183: 972-984. [302] Ansado J, Collins L, Fonov V, et al. A new template to study callosal growth shows specifc growth in anterior and posterior regions of the corpus callosum in early childhood[J]. European J Neurosci, 2015, 42(1): 1675-1684. [303] Gbedd J N, Blumenthal J, Jeffries N O, et al. Development of the human corpus callosum during childhood and adolescence: A longitudinal MRI study[J]. Prog Neuro-Psychopharmacol Biol Psychiatry, 1999, 23(4): 571-588. [304] Kolb B, Mychasiuk R, Muhammad A, et al. Experience and the developing prefrontal cortex [J]. Proc Natl Acad Sci U S A, 2012, 109: 17186-17193. [305] Schnack H G, Van Haren N E, Brouwer R M, et al. Changes in thickness and surface area of the human cortex and their relationship with intelligence[J]. Cereb Cortex, 2015, 25(6): 1608-1617. [306] Tadin D. Suppressive mechanisms in visual motion processing: From perception to intelligence[J]. Vision Res, 2015, 115: 58-70. [307] Doricchi F, Lasaponara S, Pazzaglia M, et al. Left and right temporal-parietal junctions (TPJs) as “match/mismatch” hedonic machines: A unifying account of TPJ function[J]. Phys Life Rev, 2022, 42: 56-92. [308] Oligschläger S, Xu T, Baczkowski B M, et al. Gradients of connectivity distance in the cerebral cortex of the macaque monkey[J]. Brain Struct Funct, 2019, 224: 925-935. [309] Fulcher B D, Murray J D, Zerbi V, et al. Multimodal gradients across mouse cortex[J]. Proc Natl Acad Sci U S A, 2019, 116(10): 4689-4695. [310] Huntenburg J M, Yeow L Y, Mandino F, et al. Gradients of functional connectivity in the mouse cortex reflect neocortical evolution[J]. Neuroimage, 2021, 225: 117528. [311] Pagani M, Gutierrez-Barragan D, de Guzman A E, et al. Mapping and comparing fMRI connectivity networks across species[J]. Commun Biol, 2023, 6(1): 1238. [312] Gozzi A, Ramirez J, Panzeri S, et al. Evolutionarily conserved fMRI network dynamics in the mouse, macaque and human brain[J]. bioRxiv, 2024. [313] Semple B D, Blomgren K, Gimlin K, et al. Brain development in rodents and humans: Identifying benchmarks of maturation and vulnerability to injury across species[J]. Prog Neurobiol, 2013, 106: 1-16. [314] Zhu Y, Sousa A M, Gao T, et al. Spatiotemporal transcriptomic divergence across human and macaque brain development[J]. Science, 2018, 362(6420): eaat8077. [315] Mars R B, Jbabdi S, Rushworth M F. A common space approach to comparative neuroscience [J]. Annu Rev Neurosci, 2021, 44: 69-86. [316] Fox A S, Oler J A, Birn R M, et al. Functional connectivity within the primate extended amygdala is heritable and associated with early-life anxious temperament[J]. J Neurosci, 2018, 38(35): 7611-7621. [317] Fox A S, Oler J A, Shackman A J, et al. Intergenerational neural mediators of early-life anxious temperament[J]. Proc Natl Acad Sci U S A, 2015, 112(29): 9118-9122. [318] Sherif T, Rioux P, Rousseau M E, et al. CBRAIN: A web-based, distributed computing platform for collaborative neuroimaging research[J]. Front Neuroinf, 2014, 8: 54. [319] Seidlitz J, Sponheim C, Glen D, et al. A population MRI brain template and analysis tools for the macaque[J]. Neuroimage, 2018, 170: 121-131. [320] Welniak-Kaminska M, Fiedorowicz M, Orzel J, et al. Volumes of brain structures in captive wild-type and laboratory rats: 7T magnetic resonance in vivo automatic atlas-based study[J]. PLoS one, 2019, 14(4): e0215348. [321] Yu X, Qian C, Chen D y, et al. Deciphering laminar-specifc neural inputs with line-scanning fMRI[J]. Nature methods, 2014, 11(1): 55-58. [322] Avants B B, Tustison N J, Song G, et al. A reproducible evaluation of ants similarity metric performance in brain image registration[J]. Neuroimage, 2011, 54(3): 2033-2044. [323] Xu T, Sturgeon D, Ramirez J S, et al. Interindividual variability of functional connectivity in awake and anesthetized rhesus macaque monkeys[J]. Biol Psychiatry: Cognit Neurosci Neuroimaging, 2019, 4(6): 543-553. [324] Lu H, Zou Q, Gu H, et al. Rat brains also have a default mode network[J]. Proc Natl Acad Sci U S A, 2012, 109(10): 3979-3984. [325] Ocklenburg S, Guo Z V. Cross-hemispheric communication: Insights on lateralized brain functions[J]. Neuron, 2024. [326] Van Essen D C, Donahue C, Dierker D L, et al. Parcellations and connectivity patterns in human and macaque cerebral cortex[M]. Springer, 2016: 89-106. [327] Eichert N, Robinson E C, Bryant K L, et al. Cross-species cortical alignment identifes different types of anatomical reorganization in the primate temporal lobe[J]. eLife, 2020, 9: e53232. [328] Wey H Y, Phillips K A, McKay D R, et al. Multi-region hemispheric specialization differentiates human from nonhuman primate brain function[J]. Brain Struct Funct, 2014, 219: 2187-2194. [329] Preuss T M. The human brain: Rewired and running hot[J]. Ann N Y Acad Sci, 2011, 1225: 182-191. [330] Evrard H C. The organization of the primate insular cortex[J]. Front Neuroanat, 2019, 13: 43. [331] Gannon P J, Kheck N, Hof P R. Leftward interhemispheric asymmetry of macaque monkey temporal lobe language area homolog is evident at the cytoarchitectural, but not gross anatomic level[J]. Brain Res, 2008, 1199: 62-73. [332] Kornblith S, Cheng X, Ohayon S, et al. A network for scene processing in the macaque temporal lobe[J]. Neuron, 2013, 79(4): 766-781. [333] Murray E A, Wise S P, Graham K S. the evolution of memory systems: Ancestors, anatomy, and adaptations[M]. Oxford University Press, 2017. [334] Sanides F. The cyto-myeloarchitecture of the human frontal lobe and its relation to phylogenetic differentiation of the cerebral cortex.[J]. J Fur Hirnforschung, 1964, 7: 269-282. [335] Berretz G, Wolf O T, Güntürkün O, et al. Atypical lateralization in neurodevelopmental and psychiatric disorders: What is the role of stress?[J]. Cortex, 2020, 125: 215-232. [336] Liu X, Yanagawa T, Leopold D A, et al. Robust long-range coordination of spontaneous neural activity in waking, sleep and anesthesia[J]. Cereb Cortex, 2015, 25(9): 2929-2938. [337] Hamilton C, Ma Y, Zhang N. Global reduction of information exchange during anestheticinduced unconsciousness[J]. Brain Struct Funct, 2017, 222: 3205-3216.
﹀
|
开放日期: |
2025-06-11
|