中文题名: | 一维Markov生成元在L^p空间中的谱分布 |
姓名: | |
保密级别: | 公开 |
论文语种: | 中文 |
学科代码: | 070103 |
学科专业: | |
学生类型: | 硕士 |
学位: | 理学硕士 |
学位类型: | |
学位年度: | 2021 |
校区: | |
学院: | |
研究方向: | 随机过程及交叉领域 |
第一导师姓名: | |
第一导师单位: | |
提交日期: | 2021-06-09 |
答辩日期: | 2021-05-27 |
外文题名: | The spectral distribution of one-dimensional Markov generators in L^p-spaces |
中文关键词: | |
外文关键词: | Lp-independence theory of the spectrum ; Isometric transformation ; Characteristic polynomial |
中文摘要: |
本论文研究连续时间或离散时间Markov过程的生成元在不同L^p空间上的谱性质。首先,利用等距变换,给出常系数扩散过程和生灭过程(M/M/1)的谱依赖于p的实例,并包括p=∞的情形;其次,利用特征多项式的性质,给出了一维O-U过程和线性生灭过程(M/M/∞)的谱独立于p的实例。
﹀
|
外文摘要: |
In
this paper, we study the spectral properties of generators of continuous time
or discrete time Markov processes in different L^p-spaces. First, we consider
the constant coefficient diffusion process and the birth and death process
(M/M/1) respectively. Through isometric transformation, we can get the concrete examples of the
spectra depending on p, and include the case that p=∞. Second, we consider the one-dimensional O-U
process and the linear birth and death process (M/M/∞), respectively. By using the properties of the
corresponding characteristic polynomial, the specific examples of Markov
generators whose spectra are independent of p in L^p-spaces are given.
﹀
|
参考文献总数: | 21 |
馆藏号: | 硕070103/21004 |
开放日期: | 2022-06-09 |