- 无标题文档
查看论文信息

中文题名:

 新型深紫外二阶非线性光学单氟磷酸盐的合成与性能研究    

姓名:

 杨昕睿    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 070304    

学科专业:

 物理化学    

学生类型:

 博士    

学位:

 理学博士    

学位类型:

 学术学位    

学位年度:

 2023    

校区:

 北京校区培养    

学院:

 化学学院    

研究方向:

 非线性光学晶体    

第一导师姓名:

 吴立明    

第一导师单位:

 化学学院    

提交日期:

 2023-05-29    

答辩日期:

 2023-05-26    

外文题名:

 SYNTHESIS AND EVALUATIONS OF NOVEL DEEP ULTRAVIOLET SECOND ORDER NONLINEAR OPTICAL MONOFLUOROPHOSPHATES    

中文关键词:

 二阶非线性光学晶体 ; 深紫外光学透过 ; 单氟磷酸盐 ; 溶液合成法 ; d10过渡金属阳离子 ; 异构化结晶 ; 构效关系    

外文关键词:

 Second Order Nonlinear Optical Crystal ; Deep Ultraviolet Optical Transparency ; Monofluorophosphate ; Solution Synthesis Method ; d10 transition metal cation ; Isomerizing Crystallization ; Structure-Property Relationship    

中文摘要:

波长小于200 nm的深紫外激光在半导体光刻、激光微加工、现代科学仪器等国防科技和国民经济领域有着重要的应用。深紫外二阶非线性光学晶体是全固态激光器的核心元件,可将激光器的激光波长通过频率加倍而扩展至深紫外波段,因而备受科学家们的关注。目前只有“中国牌”倍频晶体KBe2BO3F2已实现深紫外波段的商业用途,能够实现Nd:YAG(Nd:Y3Al5O12,掺钕钇铝石榴石)激光器1064 nm的六倍频,即深紫外相干光177.3 nm的直接输出。但因其存在严重的层状生长习性,且原料氧化铍有剧毒,实际生产应用受到一定限制。因此,设计并合成新型且性能优异的深紫外二阶非线性光学晶体成为迫切需求。
近几年来,单氟磷酸盐成为了设计与合成新型深紫外二阶非线性光学晶体的热门候选材料。[PO3F]2-由于引入了电负性较大的元素F,使得单氟磷酸盐具有与磷酸盐相当的大能隙(Eg)、相当强的倍频响应强度(SHG)和较大的双折射率(Δn),展现出优异的非线性光学性能。例如,深紫外非线性光学晶体NaNH4PO3F·H2O(Eg > 6.21 eV、1.1 × KH2PO4(KDP)、Δnobv. = 0.053 at 589.3 nm)、[C(NH2)3]2PO3F(Eg > 6.21 eV、1.0 × KDP、Δncal. = 0.038 at 532 nm)和Kx(NH4)2-xPO3F(x = 0–0.3)(Eg > 6.21 eV、1.0 × KDP、Δncal. = 0.030 at 532 nm)等。但是传统的合成单氟磷酸盐的方法存在F元素易流失和生产设备腐蚀等问题,这使得单氟磷酸盐的制备受到阻碍,因此急需建立一种绿色有效的合成方法。再进一步地通过结构调控和性能优化,可开发出更多性能优异的深紫外非线性光学单氟磷酸盐晶体,从而实现其在非线性光学领域的实际应用。
工作一:为了优化单氟磷酸盐的制备方法,我们建立了一种绿色、简便且有效的溶液合成法。选择制备方法简便且廉价无毒的(NH4)2PO3F作为起始原料与相应金属的碱和盐分别发生酸和单碱中和反应、酸和双碱中和反应,以及复分解反应,成功合成了三类共12例单氟磷酸盐:碱金属(Na+、K+、Rb+、Cs+;1–4)、混合阳离子(Li+NH4+、Na+NH4+、Li+K+、Na+K+;5–8),以及碱土金属单氟磷酸盐(Mg2+、Ca2+、Sr2+、Ba2+;9–12)。这种简便有效的溶液合成法,可以实现金属离子对NH4+的定量取代,同时克服了传统方法中高耗能、F元素易流失、原料HF或H2PO3F有剧毒且生产设备腐蚀等问题。这为单氟磷酸盐的有效合成,以及推动实现其在深紫外非线性光学领域的实际应用打下了坚实的基础。同时,我们还系统地对这些单氟磷酸盐进行了差热分析和热重分析,大多数详细的热稳定性数据都是首次报道,这将为相关研究提供有用的信息,有助于探索其在其他领域的更多应用。
工作二:碱金属阳离子和NH4+的最外层电子中不存在会使能隙红移的d–d和f–f电子跃迁,因此,碱金属单氟磷酸盐很有可能成为深紫外二阶非线性光学材料的最佳选择。我们选择用Na+和Rb+在水溶液中定量取代(NH4)2PO3F·H2O中的NH4+,合成了在正交晶系Pmn21非中心对称空间群结晶的Na1.5Rb0.5PO3F·H2O(NRPF·H2O)。NRPF·H2O的吸收截止边小于200 nm,可以实现在深紫外区域的光学透过;在546 nm处具有较大的双折射率Δnobv = 0.04;理论计算表明最短相位匹配波长可达265 nm,可以实现Nd:YAG激光器(1064 nm)的四倍频输出。NRPF·H2O在1064 nm和532 nm下分别显示出了相对较强的倍频响应强度:0.55 × KDP和0.2 × β-BaB2O4(BBO)。更有趣的是,分析三个密切关联的化合物(NH4)2PO3F·H2O、NaNH4PO3F·H2O和NRPF·H2O表明,(NH4)2PO3F·H2O中的NH4+逐步被Na+,以及Na+和Rb+定量取代,使得NH4+周围的氢键被逐步打破,导致三个化合物的层内氢键个数变化从8、2到2,层间氢键个数变化从2、4到0。同时,[PO3F]2-阴离子位置重排,导致三个化合物的对称元素由P21/c、Pc到Pmn21变化,并伴随着晶体结构和光学性质的改变。
工作三:通过上述绿色溶液法,我们成功合成出一例新的单氟磷酸镉盐,Cd2.5(NH4)2(PO3F)3Cl·2H2O(CNPFC),结晶于单斜晶系P21/c中心对称空间群,是深紫外区域透过的双折射晶体(双折射率Δncal. = 0.035)。我们进一步分析了三个组成相似的化合物CdPO3F·2H2O、Cd5(PO4)3Cl和CNPFC的结构,验证了过渡金属阳离子配位数的多样性(CN = 4–9),以及这些多面体之间连接方式的多样性(二聚、三聚和六聚等)。这使得过渡金属单氟磷酸盐具有丰富的结构可调性,易调控出非中心对称结构,从而获得性能优异的深紫外非线性光学晶体。
工作四:我们继续调控Cd2+中的阴离子种类和溶液浓度,发现了罕见的溶液浓度驱动的异构化结晶现象,即发现两例在深紫外区域透过的Cd(NH4)2(PO3F)2·2H2O(CdNPF)的同质异构体,分别是结晶于单斜晶系P21/n中心对称空间群的α相和结晶于正交晶系Cmc21非中心对称空间群的β相。我们将CdI2和(NH4)2PO3F以1:2的化学计量比配成浓度分别为0.15 mol/L (M) 和0.20 M(以CdI2计)的溶液,并用等量的甲醇溶剂扩散生长晶体。紫外可见吸收光谱证实了Cd2+在高浓度的CdI2-0.20 M的溶液中,周围的[PO3F]2-个数较多,因此Cd2+以[Cd(H2O)2(PO3F)4]从母液中析出,得到β-CdNPF晶体;而在低浓度的CdI2溶液中,Cd2+则以[Cd(H2O)3(PO3F)3]析出,得到α-CdNPF晶体。前者八面体的偶极矩小于后者,(β: 1.06 D vs. α: 1.60 D),成功消除了α-CdNPF中[CdO6]八面体之间强烈的反平行偶极-偶极相互作用,实现了从中心对称的α-到非中心对称的β-CdNPF的异构化结晶,成功激活了非线性光学活性(0.78 × KDP)。有趣的是,从α相到β相,正是由于Cd2+周围配位的[PO3F]2-个数从3增加到4的微小差异,使得发生在费米能级附近的Cd2+中4d10 → 4d95s1的荧光略有红移(β: 437 vs. α: 431 nm),并使能隙变小(cal.: β: 4.01 vs. α: 4.05 eV)。β-CdNPF是首例非中心对称的单氟磷酸镉盐,有望成为潜在的深紫外非线性光学晶体材料。溶液浓度驱动的异构化结晶,为更多非线性光学晶体的设计和探索提供了非常规的新颖思路。
 

 

外文摘要:

Deep ultraviolet (DUV) laser with wavelength shorter than 200 nm has important applications in the fields of semiconductor lithography, laser micromachining, modern scientific instruments and other national defense science and technology and national economy. DUV second order nonlinear optical (NLO) crystal is the core element of all-solid-state laser, which can expand the laser wavelength to DUV region by doubling the frequency, so it has attracted the attention of scientists. At present, only "Chinese brand" frequency-doubling crystal KBe2BO3F2 (KBBF) has been commercially used in DUV region, and can realize the sixfold frequency of 1064 nm Nd:YAG (Nd:Y3Al5O12, neodymium-doped yttrium aluminum garnet) laser, that is, the direct output of DUV coherent light 177.3 nm. However, due to its serious layered growth habit and the highly toxic raw material beryllium oxide, the actual applications of KBBF are limited. Therefore, the design and synthesis of new DUV second order NLO crystals with excellent performance has become an urgent need.
In recent years, monofluorophosphate, has become a popular candidate material for the design and exploration of DUV NLO crystals. Due to the introduction of an electronegative element F, [PO3F]2- has a quite large energy gap (Eg), a relatively strong second harmonic generation (SHG) response and a larger birefringence (Δn) compared with those of phosphates, showing excellent NLO properties. For example, DUV NLO crystals NaNH4PO3F·H2O (Eg > 6.21 eV, 1.1 × KH2PO4 (KDP), Δnobv. = 0.053 at 589.3 nm), [C(NH2)3]2PO3F (Eg > 6.21 eV, 1.0 × KDP, Δncal. = 0.038 at 532 nm) and Kx(NH4)2-xPO3F (x = 0–0.3) (Eg > 6.21 eV, 1.0 × KDP, Δncal. = 0.030 at 532 nm). However, the traditional synthesis method has problems such as F element loss and corrosion of production equipment, which hinders the preparation of monofluorophosphates. Therefore, it is urgent to establish a green and effective synthesis method. Further more, through structural adjustment and performance optimization, more excellent DUV NLO monofluorophosphate crystals can be developed, thus realizing their practical applications in the field of NLO lasers. 
Work 1: In order to optimize the preparation of monofluorophosphates, we establish a green, simple and effective solution synthesis method. (NH4)2PO3F, which has a simple, cheap and non-toxic preparation method, is selected as the raw material to undergo acid and single base neutralization reaction, acid and double bases neutralization reaction, and metathesis reaction with corresponding metal bases and salts, respectively. Three types of 12 cases of monofluorophosphate are successfully synthesized: alkali metals (Na+, K+, Rb+, Cs+; 1–4), mixed cations (Li+NH4+, Na+NH4+, Li+K+, Na+K+; 5–8), and alkaline earth metals monofluorophosphates (Mg2+, Ca2+, Sr2+, Ba2+; 9–12). This simple and effective solution synthesis method realizes the quantitative substitution of metal ions for NH4+, and overcomes the traditional methods of high energy consumption, easy loss of F element, highly toxic raw material HF or H2PO3F and corrosion of production equipment, etc. Such work builds a solid foundation for the effective synthesis of monofluorophosphates and their practical applications in the DUV NLO field. Simultaneously, we also systematically carry out differential thermal analysis and thermogravimetric analysis of these monofluorophosphates. Most of the detailed thermal stability data are reported for the first time, which will provide useful information for related research and help to explore more applications in other fields.
Work 2: There is no d–d and f–f electron transition that will make the band gap red shift in the outermost electrons of alkali metal cations and NH4+. Therefore, alkali metal monofluorophosphate is likely to be the best choice for DUV NLO materials. We use Na+ and Rb+ to quantitatively replace NH4+ in (NH4)2PO3F·H2O, in aqueous solution, thus synthesizing Na1.5Rb0.5PO3F·H2O (NRPF·H2O) crystallized in the noncentrosymmetric (NCS) orthorhombic space group of Pmn21. The absorption cutoff edge of NRPF·H2O is short than 200 nm, which can achieve the optical transparency down to the DUV region, and has a large birefringence Δnobv = 0.04 at 546 nm. Theoretical calculation shows that the shortest phase matching wavelength can reach 265 nm, which can realize the fourth harmonic generation of Nd:YAG laser (1064 nm). NRPF·H2O exhibits relatively strong SHG response at 1064 nm and 532 nm: 0.55 × KDP and 0.2 × β-BaB2O4 (BBO), respectively. More interestingly, the analysis of three closely related compounds (NH4)2PO3F·H2O, NaNH4PO3F·H2O and NRPF·H2O, shows that the NH4+ cations in (NH4)2PO3F·H2O are gradually quantitatively replaced by Na+, or Na+ and Rb+, so that the hydrogen bonds around NH4+ are gradually broken, resulting in the number of intra-layer hydrogen bonds of the three compounds changing from 8, 2 to 2, and the inter-layer hydrogen bonds changing from 2, 4 to 0. At the same time, the rearrangement of [PO3F]2- anions leads to the change of symmetric elements of the three compounds from P21/c, Pc to Pmn21, accompanied by changes in crystal structures and optical properties. 
Work 3: Through the green solution method described above, we successfully synthesize a new Cd2+-containing monofluorophosphate, Cd2.5(NH4)2(PO3F)3Cl·2H2O (CNPFC), which is crystallized in the monoclinic P21/c centrosymmetric (CS) space group. It is a DUV birefringent crystal (Δncal. = 0.035). We further analyze the structure of three similar compounds, CdPO3F·2H2O, Cd5(PO4)3Cl and CNPFC, and verify the diversity of transition metal cationic coordination number (CN = 4–9) and the diversity of connection modes between these polyhedrons (dimer, trimer and hexamer, etc.). This makes the transition metal monofluorophosphates have rich structural adjustability, and can be easy to regulate and obtain the NCS structures, so as to obtain excellent performances of DUV NLO crystals.
Work 4: We continue to regulate the anion species of Cd2+ and the solution concentration, and observe a rare solution concentration driven isomerization crystallization phenomenon. Two cases of Cd(NH4)2(PO3F)2·2H2O (CdNPF) isomers transparent in the DUV region are obtained, which are the α phase crystallized in the monoclinic P21/n CS space group and the β phase crystallized in the orthomorphic Cmc21 NCS space group. We prepare 0.15 mol/L (M) and 0.20 M (based on CdI2) solutions of CdI2 and (NH4)2PO3F with 1:2 stoichiometric ratio, and diffuse them with the same amount of methanol. The UV-visible absorption spectra confirm that there are more [PO3F]2- anions around Cd2+ in the higher concentration CdI2-0.20 M solution, therefore, Cd2+ is precipitated from mother liquor as [Cd(H2O)2(PO3F)4] to obtain β-CdNPF. However, Cd2+ was precipitated as [Cd(H2O)3(PO3F)3] in the lower concentration solution to obtain α-CdNPF crystal. The dipole moment of the former octahedron is smaller than that of the latter (β: 1.06 D vs. α: 1.60 D), which eventually eliminates the unwanted symmetric center trap that is induced by the antiparallel dipole-dipole interactions as happening in α-CdNPF and giving rise to the formation of NCS β-CdNPF, and the NLO activity is successfully activated (0.78 × KDP). Interestingly, from α phase to β phase, it is the small difference in the number of [PO3F]2- around Cd2+ increasing from 3 to 4 that causes the fluorescence of 4d10 → 4d95s1 in Cd2+ to be slightly redshifted (β: 437 vs. α: 431 nm) and makes the energy gap smaller (cal.: β: 4.01 vs. α: 4.05 eV). β-CdNPF is the first NCS Cd2+-containing monofluorophosphate, which is expected to be a potential DUV NLO crystal material. These insights of regulating the coordination ligand number by controlling the concentration of the mother solution that alters the crystallization process offer a new and unconventional access to the design and searches for NLO materials.

参考文献总数:

 284    

馆藏地:

 图书馆学位论文阅览区(主馆南区三层BC区)    

馆藏号:

 博070304/23007    

开放日期:

 2024-05-28    

无标题文档

   建议浏览器: 谷歌 360请用极速模式,双核浏览器请用极速模式