中文题名: | 阴离子共价有机框架膜中锂离子传输动力学研究 |
姓名: | |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 070304 |
学科专业: | |
学生类型: | 硕士 |
学位: | 理学硕士 |
学位类型: | |
学位年度: | 2024 |
校区: | |
学院: | |
研究方向: | 时间分辨超快光谱 |
第一导师姓名: | |
第一导师单位: | |
第二导师姓名: | |
提交日期: | 2024-06-20 |
答辩日期: | 2024-05-28 |
外文题名: | Research on the transport dynamics of lithium ions in anionic covalent organic framework membranes |
中文关键词: | |
外文关键词: | Fourier transform infrared spectroscopy ; Time-resolved infrared spectroscopy ; Lithium-ion transport ; Covalent organic frameworks |
中文摘要: |
固态锂离子电池具有能量密度高、循环寿命长、安全性较高、充电快速和形状设计灵活等特点,有潜力彻底改变交通、工业和电网存储等多个领域的能源利用方式。目前被广泛使用的固态电解质,包括无机电解质和聚合物电解质,均存在固有的局限性。共价有机框架(covalent organic frameworks, COFs)材料以其独特的可设计孔结构、超高的比表面积和优异的化学稳定性被认为是解决当前锂离子电池关键瓶颈的有力候选。近年来,研究人员设计合成了多种基于COFs的固态电解质,但二维COFs材料活性位点间的较大间距限制了锂离子的传输速率,大多数COFs材料的导电性较差,且其中锂离子的传输机制尚未完全明了。本文旨在探究锂离子在COFs中的传导特性和机制,从而为设计和合成具有更优异性能的COFs材料提供指导。 本文选取了四种阴离子COFs膜进行对比探究,包括三种具有较大羰基(C=O)密度(2.1 nm-2)但阴离子基团不同的COFs膜(TpMbh-PO3Li2、TpMbh-SO3Li、TpMbh-COOLi)以及较小羰基密度(1.0 nm-2)的磷酸膜TFBMbh-PO3Li2。首先对它们进行结构和形貌的表征以揭示影响锂离子传输的微观结构特征,结果发现COFs膜呈现AB堆叠模式,相邻层间略有错位使得锂离子靠近C=O中的O原子。接下来进行傅里叶变换红外光谱测量,以识别出C=O和苯环骨架的振动特征峰位。并选取这两种类型的伸缩振动为探针,在加电压前后对四种材料进行飞秒时间分辨红外光谱测量以探究锂离子传输动力学。结果表明,对四种COFs膜施加电压时,C=O的振动弛豫速率均加快,而苯环骨架的振动弛豫速率基本不变。结合锂离子所处的空间位置靠近C=O中氧原子的微观结构特点,提出了锂离子在酸性基团位点间传输过程中需要羰基中氧原子辅助的模型,其中阴离子基团的类型以及羰基的种类和密度会对锂离子传输过程造成影响。最后进行了膜电导率测试,发现羰基含量较高的磷酸膜TpMbh-PO3Li2具有较高的宏观电导率,其电导率存在温度依赖关系,利用光谱结果以及构建的锂离子传输模型可以从微观角度对其进行合理的解释。 本文主要结合傅里叶变换红外光谱和时间分辨红外光谱来研究阴离子COFs膜中锂离子在结构规整的孔道中的传导,为从分子水平上理解COFs膜的宏观电导率提供了重要线索,同时对优化基于COFs的电解质材料的设计具有一定启发。 |
外文摘要: |
Solid-state lithium-ion batteries, with their exceptional energy density, extended cycle longevity, robust safety features, swift charging capabilities, and versatile design adaptability, hold the promise of radically transforming energy consumption practices across a multitude of domains, including but not limited to transportation, industrial applications, and electrical grid storage systems. Currently widely used solid electrolytes, including inorganic electrolytes and polymer electrolytes, have inherent limitations. Covalent organic frameworks (COFs) with their unique designable pore structure, extensive specific surface area and excellent chemical stability are considered to be strong candidates to solve the key bottlenecks of current lithium-ion batteries. In recent years, researchers have designed and synthesized a variety of solid electrolytes based on COFs, but the considerable spacing between the active sites in two-dimensional COF materials limits the transport rate of lithium ions. Additionally, the majority of COF materials exhibit limited electrical conductivity, and the transport mechanism of lithium ions within these materials has not been completely deciphered. This study aims to investigate the conduction properties and mechanisms of lithium ions within COFs, in order to guide the design and synthesis of COF materials with enhanced performance. |
参考文献总数: | 101 |
馆藏号: | 硕070304/24031 |
开放日期: | 2025-06-20 |