- 无标题文档
查看论文信息

中文题名:

 具有含氮原子取代基的新型环间苯阻转异构大环分子的合成及性能研究    

姓名:

 梁家其    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 070303    

学科专业:

 有机化学    

学生类型:

 博士    

学位:

 理学博士    

学位类型:

 学术学位    

学位年度:

 2024    

校区:

 北京校区培养    

学院:

 化学学院    

研究方向:

 超分子化学    

第一导师姓名:

 龚汉元    

第一导师单位:

 化学学院    

提交日期:

 2024-06-18    

答辩日期:

 2024-05-24    

外文题名:

 Synthesis and Properties of Novel Cyclo-meta-Phenylenes Atropisomers with N-contained Substitutes    

中文关键词:

 环间苯大环分子 ; 阻转异构体 ; 含氮原子取代基 ; 刺激响应    

外文关键词:

 Cyclo-meta-phenylenes ; Macrocycles ; Atropisomers ; N-contained substituent ; Stimuli response    

中文摘要:

富碳大环化合物合成及性能研究推动着超分子碳材料的发展。大环化合物的构象和性能对材料的性能起着决定性作用。对大环化合物的构象和性能的调控是促进超分子智能材料发展的重要途径之一。本论文工作主要集中在具有含氮原子取代基的新型环间苯富碳大环化合物阻转异构体的合成,构象及组装调控的研究,开展了以下三个工作: 
(1) 合成了含有四个吡啶取代基的环间苯大环阻转异构体,并对其构象调控以及组装体进一步调控进行了深入研究。利用热响应实现了以大环为构建模块的有机金属笼。合成的环[4](1,3-(4,6-二甲基)苯)[4](1,3-(4,6-二甲基)苯)(4-吡啶) (CP4),具有三种不同的室温稳定刚性阻转异构体。两种具有Cs对称性,一种具有C4v对称性。当在不同的温度下加热时,这三种阻转异构体可发生可控转化。以CP4为构筑基元,可以通过分步或原位的方法获得了八面体的金属-有机分子笼 CC-Pd。当Cs-CP4或Cs’-CP4与Pd2+结合时,原位形成黄色凝胶。当对凝胶加热时,大环化合物的刚性骨架发生翻转,初始凝胶进一步发生改变产生自组装笼状结构CC-Pd。这种方法为实现热响应材料提供了新的途径。
(2) 改变了吡啶取代基的数量,进一步探究了取代基数量对阻转异构体以及组装体的影响。具体为合成了两个吡啶基团取代的环间苯大环化合物,即环[6](1,3-(4,6-二甲基)苯)[2](1,3-(4,6-二甲基)苯)(4-吡啶) (CP2)。该大环体系具有四种室温下稳定的非对映阻转异构体,一种具有C1对称性,两种具有Cs对称性,一种具有C2v对称性。通过变温核磁发现,在393 K或473 K下,C1-或Cs-CP2 均可以定量转化成C2v-CP2。C2v-CP2与不同金属离子进行配位组装时,可调控刚性骨架的配位基团间的夹角,形成独立的矩形/菱形纳米尺度分子笼,一维分子笼聚合物等结构。不同阴离子的引入,可调控刚性大环化合物与同一金属离子 (如Ag+) 形成不同结构。更意外的是改变溶剂,可以实现一维分子笼聚合物转变成一维长链聚合物,或是矩形分子笼转变成三角形分子笼。在上述调控过程中,刚性结构的C2v-CP2中的吡啶基团之间的角度随着金属离子、溶剂、金属离子的抗衡离子的种类不同从近143°向8°缩小。该部分工作是刚性分子在多种环境下自适应组装的首个例子,这为单一组装基元构筑多种结构和功能新型自组装材料提供了新的策略。
(3) 合成了含有硝基取代基的一系列新型环间苯大环化合物 ([n]CMPN,n = 6,8,10,12)。通过核磁,质谱,单晶X射线衍射分析,发现[6]CMPN具有近平面结构,为C3v对称。[8]CMPN与CP4相同,具有三种阻转异构体,两种具有Cs对称性 (命名为Cs-[8]CMPN,Cs’-[8]CMPN),一种为C4v对称性 (C4v-[8]CMPN)结构。通过单晶X射线衍射分析,发现[10]CMPN为C5v对称的双碗状分子管片段结构。大空腔的[12]CMPN在溶剂中构象不稳定,相对容易翻转,两种具有C3v构象的纳米分子管平衡共存。通过Ni催化还原的方法可将[n]CMPN定量的转换成了含有氨基取代基的环间苯大环化合物 [n]CMPNH, (n = 6或8)。将C4v-[8]CMPNH与1,3,6,8-芘四磺酸组装形成单元结构为菱形分子笼的氢键有机框架(Hydrogen-bonded organic frameworks, HOF)。该部分为进一步发展含有氮原子取代基的大环化合物的后继研究提供了物质基础。
综上所述,本论文仅利用引入取代基的数量,调控在环境温度下稳定阻转异构体的类型和数量;单纯的热诱导可使阻转异构体之间的构象和性质发生改变;在CDMB-8的分子骨架和阻碍σ键翻转以稳定构象的甲基保持不变情况下,大环分子骨架保持不变,σ键远端取代基的引入对CDMB-8的稳定异构体骨架种类影响较小。这为阻转异构体大环化合物的构象调控和超分子组装材料的构建起到了一定的推动作用。该系列大环分子将有望在溶剂调控客体释放、基于大环分子直接自下而上构筑纳米管片段、溶剂调控纳米管和纳米片转换的方向开展相关后继研究,发展外界刺激响应精确调控的智能分子材料体系。

外文摘要:

The synthesis and investigation of carbon-rich macrocyclic compounds derived from mesitylene contribute to the development of supramolecular carbon materials. The structure and characteristics of macrocyclic molecules have a significant impact on the material functionalities. Modulating the conformation and characteristics of macrocycles is a crucial method for developing supramolecular smart carbon materials. This study primarily focused on the conformational and assembly regulation of cyclo-meta-phenylene atropisomers with nitrogen-containied substituents. The research is divided into three main parts:
(1) The synthesis of novel cyclo-meta-phenylenes atropisomers with four pyridine substituents has been accomplished, and their conformational regulation and assembly modulation have been extensively studied. Thermal response was utilized to create organometallic cages using macrocycles as the fundamental components. Cyclo[4](1,3-(4,6-dimethyl)benzene)[4](1,3-(4,6-dimethyl)benzene)(4-pyridine) (CP4) has three distinct and rigid atropisomers with room temperature stability. Two of them exhibit Cs symmetry, while the other one displays C4v symmetry. By subjecting these three atropisomers at varying temperatures, it is possible to induce controlled conversions. Heating can be employed to selectively acquire the C4v isomers and further regulate their gradual or on-site self-organization. The octahedral metal-organic molecular cage CC-Pd was synthesized by either stepwise or in situ reactions, utilizing CP4 as the fundamental building block. When Cs-CP4 or Cs'-CP4 was coordinated with Pd2+, a yellow gel was spontaneously produced. Upon heating, the macrocyclic molecule undergoes a conformational change, causing the gel to transform into a CC-Pd structure. This methodology offers a novel method for creating thermoresponsive materials.
(2) The pyridine substituents were manipulated to further examine the effects of the substituent number on the transformation and assembly process of the atropisomers. The macrocycle cyclo[6](1,3-(4,6-dimethyl)benzene)[2](1,3-(4,6-dimethyl)benzene) (4-pyridine) (CP2) was synthesized. This macrocyclic system exhibits four atropisomers, characterized by different symmetries: one with C1 symmetry, two with Cs symmetry, and one with C2v symmetry. The complete transformation of C1- or Cs-CP2 into C2v-CP2 at 393 K or 473 K. The isomer's conversion rate exhibits temperature dependence, with a reaction time that is 110 times greater at 393 K compared to 473 K. The coordination of C2v-CP2 with various metal ions alters the angle between the coordination pyridinyl groups of the rigid framework, resulting in the formation of distinct rectangular/rhombic nanoscale molecular cages, one-dimensional molecular cage polymers, and other structures. The addition of various anions can alter the complexation between C2v-CP2 and same cation (e.g., Ag+). Interestingly, altering the solvent allows for the transformation of one-dimensional molecular cage polymers into one-dimensional long-chain polymers, or rectangular molecular cages into triangular molecular cages. During the modulation mentioned above, the angle between the pyridine groups in the rigid structure of C2v-CP2 decreases from around 120° to 9°. This change is influenced by factors such as the kind of metal ions, solvents, and counter ions. This work represents the initial example of the adaptive assembly of inflexible molecules in different environments, offering a novel approach for creating diverse and functional carbon materials using a simple assembly pattern. 
(3) Cyclo-meta-phenylenes with nitro substituents (i.e., [n]CMPN) were generated. It was determined that [6]CMPN has a near planar structure with C3v symmetry. [8]CMPN has three different atropisomers. Two of them have Cs symmetry (namely Cs-[8]CMPN and Cs’-[8]CMPN). The third (i.e., C4v-[8]CMPN) has C4v symmetry. [10]CMPN shows a double-bowl structure with C5v symmetry. [12]CMPN with a large cavity is structurally unstable and can easily undergo flipping in the solvent.. The [n]CMPN molecule could be completely transformed into corresponding CMPNH with either 6 or 8 amino substituents, through a reduction reaction. C4v-[8]CMPNH underwent self-assembly with 1,3,6,8-pyrene tetrasulfonic acid to create a hydrogen-bonded organic framework (HOF) that has a rhombic box unit structure. This section serves as a foundation for further research on the macrocycles with nitrogen-containied substituents.
In summary, in this thesis, the type and number of stable atropisomers at ambient temperature can be regulated only with the substituent number. Thermal response can lead to the changes in structures and properties among the atropisomers. With the molecular backbone of CDMB-8 containing the methyl groups hindering the σ-bond flip, the introduction of the distal substituent of the σ-bond has little effect on the stable isomeric backbone of CDMB-8. However, the substituent can promote the regulation of the macrocycle atropisomers, as well as corresponding supramolecular assembly materials. This series of macrocycles will be expected to developing the research in controllable guest capture/release, bottom-up construction of nanotube fragments, anosheet transitions, also smart molecular material systems with precise regulation of external stimulus response.
 

参考文献总数:

 282    

作者简介:

 梁家其, 男,汉族,1992年12月出生于山东枣庄。2012年9月,考入泰山医学院 (现山东第一医科大学) 化学与工程学院攻读学士学位,导师陈红余副教授。2017年考入长春工业大学化工学院攻读硕士研究生学位,导师郭佩佩教授。2018年8月,在国家纳米科学中心联合培养,导师段鹏飞研究员,主要从事圆偏振发光材料的研究。2020年6月获工学硕士学位。2021年9月考入北京师范大学攻读博士研究生学位,在龚汉元教授指导下,主要从事环间苯大环化合物的合成及自组装体系的研究。    

馆藏地:

 图书馆学位论文阅览区(主馆南区三层BC区)    

馆藏号:

 博070303/24002    

开放日期:

 2025-06-18    

无标题文档

   建议浏览器: 谷歌 360请用极速模式,双核浏览器请用极速模式