- 无标题文档
查看论文信息

中文题名:

 时频联合分析在神经电生理数据处理中的应用    

姓名:

 王佳鑫    

保密级别:

 公开    

论文语种:

 中文    

学科代码:

 070201    

学科专业:

 物理学    

学生类型:

 学士    

学位:

 理学学士    

学位年度:

 2021    

学校:

 北京师范大学    

校区:

 北京校区培养    

学院:

 物理学系    

第一导师姓名:

 马燚娜    

第一导师单位:

 北京师范大学认知神经科学与学习国家重点实验室    

第二导师姓名:

 廖红波    

提交日期:

 2021-06-20    

答辩日期:

 2021-05-18    

外文题名:

 Time-Frequency Analysis and Its Applications to Electrophysiology Signals    

中文关键词:

 脑电图 ; 时频联合分析 ; 不确定性原理 ; 脑间神经相似性    

外文关键词:

 electroencephalogram ; time-frequency analysis ; uncertainty principle ; inter-brain neural similarity    

中文摘要:

时间-频率联合分析方法可以揭示信号频谱的局域特征,是分析非平稳随机生理信号的有效手段。本文以脑电信号为例,介绍了常用于脑电数据处理的短时傅里叶变换、复小波变换和多正交窗3种线性时频分析方法及其优缺点,并进一步阐明时间-频率不确定性原理在时频变换中的关键作用。在具体实践中,将不同时频分析方法应用于经预处理后的任务态立体定向脑电信号,得到的时频谱均能有效揭示信号各频率成分的动态特征。进一步的对比表明具有可变Q值的Morlet复小波变换可以较好地提取信号的细节特征,是一种精确度较高且实现灵活的分析方法。最后,利用时频分析得到的能量谱计算用于反映脑间神经相似性的相关性指标,通过建立“时间-空间-频率”图像,说明时频变换在揭示大脑认知神经机制中的重要作用。本文是理解和完善电生理信号数据处理框架下时频分析方法体系的一次有效尝试。

外文摘要:

Time-frequency analysis can reveal the temporal characteristics of the frequency spectrum of a signal, and is an efficient tool to analyze non-stationary and random electrophysiology signals. With respect to electroencephalogram, we introduced three commonly-used linear time-frequency analysis methods—short-time Fourier transform, complex wavelet transform and multi-tapers. We further illustrated the crucial role of time-frequency uncertainty principle in signal processing. For practical use, different time-frequency analysis methods were applied to the preprocessed task-related stereo-electroencephalogram signals. We confirmed the effectiveness of different time-frequency analysis methods in extracting dynamic characteristics of the frequency components. After comparing the results, more detailed information was provided by Morlet wavelet transform with a tunable Q value, which is a flexible method with higher precision. Finally, the power spectrum obtained from the time-frequency analysis was used to calculate the power correlation index to reveal inter-brain neural similarity. We established a “time-space-frequency” framework to interpret the significance of time-frequency analysis in unveiling the neural mechanism of certain cognitive process of human brain. Our work provided an attempt to understand and improve the framework of time-frequency analysis in electrophysiological signal processing.

参考文献总数:

 35    

作者简介:

 王佳鑫(1998-),男,山西太原人,北京师范大学物理学系2017级本科生    

插图总数:

 10    

插表总数:

 1    

馆藏号:

 本070201/21106    

开放日期:

 2022-06-20    

无标题文档

   建议浏览器: 谷歌 360请用极速模式,双核浏览器请用极速模式