- 无标题文档
查看论文信息

中文题名:

 群体运动中共识问题的探究    

姓名:

 李若冰    

保密级别:

 公开    

论文语种:

 中文    

学科代码:

 070101    

学科专业:

 数学与应用数学    

学生类型:

 学士    

学位:

 理学学士    

学位年度:

 2021    

学校:

 北京师范大学    

校区:

 北京校区培养    

学院:

 数学科学学院    

第一导师姓名:

 蔡勇勇    

第一导师单位:

 北京师范大学数学科学学院    

提交日期:

 2021-05-25    

答辩日期:

 2021-05-08    

外文题名:

 Exploration of Consensus Issues in Group Movements    

中文关键词:

 集群生物 ; 群体运动 ; Cucker-Smale 模型 ; 常微分方程    

外文关键词:

 Clustered organisms ; group movement ; Cucker-Smale model ; ordinary differential equation (ODE)    

中文摘要:
群体运动中的共识是指在特定的环境下,一个群体根据简单,有限的信息和规则,在个体之间的交互作用下达成的一致的,稳定的状态。该现象广泛存在于自然界中,吸引着物理学、社会科学以及生物学等多领域学者的兴趣。本文将使用基于常微分方程的 Cucker-Smale 模型对该现象进行探究与分析。本文共分为五章。第一章为前言,该章节简述了生物界经典的群体运动共识问题,并阐述了其在多方面的研究价值及实际意义;第二章为国内外研究现状,该章节中介绍并分析了群体运动共识问题领域的经典模型及演化过程;第
三章为模型简述,本章从 Cucker-Smale 模型出发,对其性质与更新原理进行阐述并对证明了其在不同参数条件下的收敛性,同时,也简要介绍了本模型所使用的数值方法;第四章为仿真过程,本章运用 Cucker-Smale 模型对不同参数组进行数值模拟,并对部分仿真结果进行展示;第五章引入了平均场极限的概念,并探讨了该理论在群体运动问题中的应用;最后一章总结本文并提出了对于进一步学习探究的思考与展望。
外文摘要:
Consensus in group motion refers to an agreed, stable state reached by a group based on simple, limited information and rules in a given environment, with the interaction among individuals. The phenomenon has been widely present in nature and has attracted the interest of scholars in multiple fifields such as physics, social sciences, and biology. In this paper, we study and analyze this phenomenon using the Cucker-Smale model based on ordinary difffferential equations. There are 4 chapters in the thesis. Chapter 1 is the introduction, which gives a brief description of the consensus problem of group motion, and explains its scientifific value and practical signifificance in various aspects; Chapter 2 is the status of domestic and international research, in which the classical models and evolutionary processes in the fifield of consensus problem of group motion are introduced and analyzed; Chapter 3 is a brief description of the model. This chapter starts from the Cucker-Smale model, explains its properties and updating principles and proves its convergence under difffferent parameters, and also brieflfly introduces the numerical methods used in this model; Chapter 4 is a simulation process, this chapter applies the Cucker-Smale model to numerically simulate difffferent parameter sets and shows some simulation results; Chapter 5 introduces the concept of mean-fifield limit and discusses the application of this theory to group motion problems; the last chapter concludes the paper and presents thoughts and prospects for further study. Chapter 5 introduces the concept of mean-fifield limit and discusses the application of this theory to group motion problems; the last chapter concludes the paper and presents thoughts and prospects for further study and investigation.
参考文献总数:

 4    

插图总数:

 0    

插表总数:

 0    

馆藏号:

 本070101/21223    

开放日期:

 2022-05-25    

无标题文档

   建议浏览器: 谷歌 360请用极速模式,双核浏览器请用极速模式