中文题名: | 四元硫属化合物#的合成、结构及性质的研究 |
姓名: | |
保密级别: | 公开 |
论文语种: | 中文 |
学科代码: | 070304 |
学科专业: | |
学生类型: | 硕士 |
学位: | 理学硕士 |
学位类型: | |
学位年度: | 2018 |
校区: | |
学院: | |
第一导师姓名: | |
第一导师单位: | |
提交日期: | 2018-05-08 |
答辩日期: | 2018-05-29 |
外文题名: | SYNTHESES, STRUCTURES AND PROPERTIES OF # QUATERNARY CHALCOGENIDES |
中文关键词: | |
中文摘要: |
硫属化合物因具有丰富的结构和多样的性能而备受研究者关注。其中A-M-M'-Q系列四元硫属化合物成为一个研究热点。金属原子M通常与硫族原子Q形成四面体,四面体的不对称堆积容易形成非中心对称的结构,因而可能具有二阶非线性光学性能;金属原子M种类的不同,可能会带来特殊的性能,例如,Fe、Mn等磁性原子的加入会使化合物具有磁性,Cd等含有d10轨道的原子的加入可能会使化合物具有热致变色的性质;碱金属原子A的加入,容易形成二维层状结构或者三维隧道结构,进而可能具有热电性能、光电性能、离子交换性能等;硫族元素Q的不同,对化合物的能隙影响较大,可能对其性质也会产生影响,例如,能隙小的Te化物表现窄带半导体热电性能;非线性光学材料一般含大能隙的S化物表现出宽带半导体的非线性光学性质;而Se化物能隙居中,可能具有较好的热电性能,也可能具有良好的非线性光学性能。因此,本论文主要对A-M-M'-Q系列四元硫属化合物开展探索研究,探索新颖四元硫属化合物的合成方法,并对其结构和性能进行研究。利用高温固相反应的方法,成功地得到了7个非中心结构的和1个中心结构的四元硫属化合物。本论文详细地讨论所得化合物的合成方法、晶体结构、电子结构、光学性能、热学性能和二阶非线性光学性能,并利用布里奇曼单晶生长法对其中两个化合物进行了大晶体合成工作。具体工作概括如下:
1. 第三章探索研究了含Rb和Mn元素的A2MIIMIV3Q8 (A = 碱金属;MII = 二价金属;MIV = 四价金属;Q = 硫族元素)四元体系。利用高温固相合成法成功地制备出了1个具有中心对称结构和5个具有非中心对称结构的新颖四元硫属化合物:中心对称化合物Cs2MnGe3S8 (1)结晶于单斜晶系P21/n (No. 14),非中心对称的化合物Cs2MnGe3Se8 (2)、Cs2MnSn3Se8 (3)、Rb2MnGe3S8 (4)和Rb2MnGe3Se8 (5)结晶于正交晶系P212121 (No. 19),以及非中心对称的Rb2MnSn3Se8 (6)结晶于单斜晶系的P21 (No. 4)。利用布里奇曼单晶生长法,得到了化合物Cs2MnGe3Se8 (2)和Cs2MnSn3Se8 (3)的体积较大(约20 × 5 × 1 mm3)的晶体。同时,对非中心对称结构的化合物进行二阶非线性光学性能测试,1.0 μm激光波长下,化合物2–6具有二阶非线性光学响应,与AgGaS2相比,信号比较弱。我们还提出一个结构因子F,定义为F = r_(M^II ) + r_(M^IV ) + 2 r_(Q^(2–) ) - 2 r_(A^+ ),来描述A2MIIMIV3Q8系列化合物的结构类型分布,结果表明:当F值的范围在1.2–1.9时,化合物比较倾向于采用高对称性的P212121 (No. 19)空间群;当F < 1.2时,化合物容易采取P21/n (No. 14)空间群;当F > 1.9时,化合物倾向于选择最低对称性的P21 (No. 4)空间群。这一发现对理解类似体系的化合物的结构具有一定指导意义。同时,本章的研究内容也对大晶体生长提供了一些有用的信息。
2. 第四章以AMII4MIII5Q12系列化合物作为研究对象,期望在此基础上合成出新颖的、具有优异性能的化合物。通过高温固相反应,得到了两颗非中心对称的晶体CsZn4In5Se12 (7)和CsZn4Ga5Se12 (8),它们都属于三方晶系的R3 (No.146)空间群,其结构都是由MSe4四面体通过共顶点的方式连接形成三维网状结构,Cs+离子填充于由相邻的12个Se原子形成的立方八面体的空隙中。通过对AMII4MIII5Q12 (A = K,Rb,Cs;MII = Mn,Zn,Cd;MIII = Ga,In;Q = S,Se,Te)系列化合物的晶胞体积、能隙和二阶非线性光学信号强度的研究,发现(含S和Se系列化合物)随着化合物晶胞体积的增大,能隙逐渐减小;随着能隙的增大,二阶非线性光学信号强度逐渐减弱;随着A原子的原子序数的增大,二阶非线性光学信号强度减弱;In系列化合物的二阶非线性光学信号的强度比相对应的Ga系列化合物的强。
﹀
|
外文摘要: |
A-M-M'-Q quaternary chalcogenides have attracted much attention because of their various interesting properties, such as thermoelectric properties, nonlinear optical properties, photoelectric properties, magnetic properties, thermochromism properties and ion-exchange properties. Thereinto, M and Q atoms are likely to form MQ4 distorted tetrahedra, which maybe result in a non-centrosymmetric structure that is a requirement for second order nonlinear optical property. Chalcogenide Q atoms play an important role in band gap, which may have influence on their properties, for example, Te-containing compounds usually are thermoelectric materials; nonlinear optical materials generally are S-containing compounds; while Se-containing compounds may have good thermoelectric and nonlinear optical properties. Therefore, our research is mainly to explore new A-M-M'-Q quaternary chalcogenides, and to study their structures and performances. Seven non-centrosymmetric compounds and one centrosymmetric compound have been discovered via high temperature solid-state method. Syntheses, crystal structures, electronic structures, optical properties, thermal properties and second-order nonlinear optical properties of synthesized compounds have been discussed, and two of these compounds have been synthesized via Bridgman method. The specific work is summarized as follows:
1. In chapter 3, Rb and Mn elements are introduced into A2MIIMIV3Q8 (A = alkali metal; MII = bivalent metal; MIV = tetravalent metal; Q = chalcognides) family, and we have discovered six new Mn-containing compounds: centrosymmetric Cs2MnGe3S8 (1) and non-centrosymmetric Cs2MnGe3Se8 (2), Cs2MnSn3Se8 (3), Rb2MnGe3S8 (4), Rb2MnGe3Se8 (5), and Rb2MnSn3Se8 (6). Meanwhile, the non-centrosymmetric compounds are second harmonic generation positive at 1.0 μm laser wavelength. In addition, about 20 × 5 × 1 mm3 plate-like large-sized crystals of compounds Cs2MnGe3Se8 (2) and Cs2MnSn3Se8 (3) are obtained by Bridgman method. These six new compounds all belong to A2MIIMIV3Q8 family and possess similar structure, but they belong to different space group. In order to find out the reason, we propose a structure mismatch factor ("F = " "r" _(M^"II" ) " + " "r" _("M" ^"IV" ) " + 2 " "r" _("Q" ^"2–" )-"2 " "r" _("A" ^"+" )) to describe the phase map of this family. The P212121-type structure will be adopted when 1.2 < F < 1.9, otherwise, the structure will be the P21/n-type with F < 1.2, or P21-type with F > 1.9, which means if the A+ is too small or too large to fit well in the cavity, the symmetry of the 2-1-3-8 family will decrease. The insight in this work may help the structure understanding of related systems, and provides some useful information on large crystal growth.
2. In chapter 4, based on the AMII4MIII5Q12 (A = K, Rb, Cs; MII = Mn, Zn, Cd; MIII = Ga, In; Q = S, Se, Te) family, we try to explore more similar new compounds with excellent nonlinear optical properties. We have obtained two non-centrosymmetric crystals: CsZn4In5Se12 (7) and CsZn4Ga5Se12 (8) via high temperature solid-state method. They both crystallize in R3 (No.146) space group. They are 3D tunnel structure composed by MSe4 tetrahedra via vertex-connection and Cs+ atoms fill in the cuboctahedron. We find that there are some rules in the S-analogous and Se-analogous compounds of AMII4MIII5Q12 family: along with the increase of unit cell volume, the band gap decrease; with the increase of band gap, the SHG intensity decrease; A atoms changed from K to Cs, the SHG intensity decrease; the SHG intensities of In-analogous compounds are stronger than Ga-analogous compounds. According to the SHG intensity of Se-containing of AMII4MIII5Q12 compounds, we guess that compound CsZn4Ga5Se12 (8) will also have strong SHG intensity at 2.05 μm laser wavelength.
﹀
|
参考文献总数: | 118 |
作者简介: | 硕士期间,分别以第一作者和第三作者的身份各发表一篇SCI文章。 |
馆藏号: | 硕070304/18004 |
开放日期: | 2019-07-09 |